Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Expander graph
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Ramanujan graphs=== {{main|Ramanujan graph}} By a [[Alon–Boppana bound|theorem of Alon and Boppana]], all sufficiently large {{mvar|d}}-regular graphs satisfy <math>\lambda_2 \ge 2\sqrt{d-1} - o(1)</math>, where {{math|''λ''{{sub|2}}}} is the second largest eigenvalue in absolute value.<ref>Theorem 2.7 of {{harvtxt|Hoory|Linial|Wigderson|2006}}</ref> As a direct consequence, we know that for every fixed {{mvar|d}} and <math>\lambda< 2 \sqrt{d-1}</math> , there are only finitely many {{math|(''n'', ''d'', ''λ'')}}-graphs. [[Ramanujan graph]]s are {{mvar|d}}-regular graphs for which this bound is tight, satisfying <ref>Definition 5.11 of {{harvtxt|Hoory|Linial|Wigderson|2006}}</ref> :<math>\lambda = \max_{|\lambda_i| < d} |\lambda_i| \le 2\sqrt{d-1}.</math> Hence Ramanujan graphs have an asymptotically smallest possible value of {{math|''λ''{{sub|2}}}}. This makes them excellent spectral expanders. [[Alexander Lubotzky|Lubotzky]], Phillips, and [[Peter Sarnak|Sarnak]] (1988), Margulis (1988), and Morgenstern (1994) show how Ramanujan graphs can be constructed explicitly.<ref>Theorem 5.12 of {{harvtxt|Hoory|Linial|Wigderson|2006}}</ref> In 1985, Alon, conjectured that most {{mvar|d}}-regular graphs on {{mvar|n}} vertices, for sufficiently large {{mvar|n}}, are almost Ramanujan.<ref>{{Cite journal|last=Alon|first=Noga|date=1986-06-01|title=Eigenvalues and expanders|journal=Combinatorica|language=en|volume=6|issue=2|pages=83–96|doi=10.1007/BF02579166|s2cid=41083612|issn=1439-6912}}</ref> That is, for {{math|''ε'' > 0}}, they satisfy :<math>\lambda \le 2\sqrt{d-1}+\varepsilon</math>. In 2003, Joel Friedman both proved the conjecture and specified what is meant by "most {{mvar|d}}-regular graphs" by showing that [[Random regular graph|random {{mvar|d}}-regular graphs]] have <math>\lambda \le 2\sqrt{d-1}+\varepsilon</math> for every {{math|''ε'' > 0}} with probability {{math|1 – ''O''(''n''{{sup|-τ}})}}, where<ref>{{cite arXiv|last=Friedman|first=Joel|date=2004-05-05|title=A proof of Alon's second eigenvalue conjecture and related problems|eprint=cs/0405020}}</ref><ref>Theorem 7.10 of {{harvtxt|Hoory|Linial|Wigderson|2006}}</ref> :<math>\tau = \left\lceil\frac{\sqrt{d-1} +1}{2} \right\rceil.</math> A simpler proof of a slightly weaker result was given by Puder.<ref>{{cite journal|last=Puder|first=Doron|date=2015-08-21|title=Expansion of random graphs: New proofs, new results|journal=Inventiones Mathematicae |volume=201 |issue=3 |pages=845–908 |doi=10.1007/s00222-014-0560-x |arxiv=1212.5216|bibcode=2015InMat.201..845P |s2cid=253743928 }}</ref><ref>{{cite journal|last=Puder|first=Doron|year=2015|title=Expansion of random graphs: new proofs, new results|journal=[[Inventiones Mathematicae]]|language=en|volume=201|issue=3 |pages=845–908|doi=10.1007/s00222-014-0560-x|arxiv=1212.5216 |bibcode=2015InMat.201..845P |s2cid=16411939|issn=0020-9910}}</ref><ref>{{cite journal|last1=Friedman|first1=Joel|last2=Puder|first2=Doron|date=2023|title=A note on the trace method for random regular graphs|journal=[[Israel Journal of Mathematics]] |volume=256 |pages=269–282 |doi=10.1007/s11856-023-2497-5 |arxiv=2006.13605|s2cid=220042379 }}</ref> [[Adam Marcus (mathematician)|Marcus]], [[Daniel Spielman|Spielman]] and [[Nikhil Srivastava|Srivastava]],<ref name="mss13">{{cite conference|author=Adam Marcus|author1-link=Adam Marcus (mathematician)|author2=Daniel Spielman|author2-link=Daniel Spielman|author3=Nikhil Srivastava|author3-link=Nikhil Srivastava|year=2013|title=Interlacing families I: Bipartite Ramanujan graphs of all degrees|url=https://annals.math.princeton.edu/wp-content/uploads/Marcus_Spielman_SrivastavaIFI.pdf|conference=Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium}}</ref><ref name="mss15">{{cite conference|author=Adam Marcus|author1-link=Adam Marcus (mathematician)|author2=Daniel Spielman|author2-link=Daniel Spielman|author3=Nikhil Srivastava|author3-link=Nikhil Srivastava|year=2015|title=Interlacing families IV: Bipartite Ramanujan graphs of all sizes|url=https://www.cs.yale.edu/homes/spielman/PAPERS/IF4.pdf|conference=Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium}}</ref> gave a construction of [[bipartite graph|bipartite]] Ramanujan graphs based on [[#Lifts|lifts]]. In 2024 a preprint by Jiaoyang Huang, Theo McKenzieand and [[Horng-Tzer Yau]] proved that :<math>\lambda \le 2\sqrt{d-1}</math>. with the fraction of eigenvalues that hit the Alon-Boppana bound approximately 69% from proving that [[Random matrix#Edge statistics|edge universality]] holds, that is they follow a [[Tracy–Widom distribution|Tracy-Widom distribution]] associated with the [[Gaussian Orthogonal Ensemble]]<ref>{{cite arXiv | eprint=2412.20263 | last1=Huang | first1=Jiaoyang | last2=McKenzie | first2=Theo | last3=Yau | first3=Horng-Tzer | title=Ramanujan Property and Edge Universality of Random Regular Graphs | date=2024 | class=math.PR }}</ref><ref>{{Cite web |last=Sloman |first=Leila |date=2025-04-18 |title=New Proof Settles Decades-Old Bet About Connected Networks |url=https://www.quantamagazine.org/new-proof-settles-decades-old-bet-about-connected-networks-20250418/ |access-date=2025-05-06 |website=Quanta Magazine |language=en}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)