Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Expectation–maximization algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== As a maximization–maximization procedure == The EM algorithm can be viewed as two alternating maximization steps, that is, as an example of [[coordinate descent]].<ref name="neal1999">{{cite book|last1=Neal |first1=Radford |last2=Hinton |first2=Geoffrey |author-link2=Geoffrey Hinton |contribution=A view of the EM algorithm that justifies incremental, sparse, and other variants |title=Learning in Graphical Models |editor=Michael I. Jordan |editor-link=Michael I. Jordan |pages= 355–368 |publisher= MIT Press |location=Cambridge, MA |year=1999 |isbn=978-0-262-60032-3 |url=http://ftp.cs.toronto.edu/pub/radford/emk.pdf |access-date=2009-03-22}}</ref><ref name="hastie2001">{{cite book|last1=Hastie |first1= Trevor|author-link1=Trevor Hastie|last2=Tibshirani|first2=Robert|author-link2=Robert Tibshirani|last3=Friedman|first3=Jerome |year=2001 |title=The Elements of Statistical Learning |url=https://archive.org/details/elementsstatisti00thas_842 |url-access=limited |isbn=978-0-387-95284-0 |publisher=Springer |location=New York |chapter=8.5 The EM algorithm |pages=[https://archive.org/details/elementsstatisti00thas_842/page/n237 236]–243}}</ref> Consider the function: :<math> F(q,\theta) := \operatorname{E}_q [ \log L (\theta ; x,Z) ] + H(q), </math> where ''q'' is an arbitrary probability distribution over the unobserved data ''z'' and ''H(q)'' is the [[Entropy (information theory)|entropy]] of the distribution ''q''. This function can be written as :<math> F(q,\theta) = -D_{\mathrm{KL}}\big(q \parallel p_{Z\mid X}(\cdot\mid x;\theta ) \big) + \log L(\theta;x), </math> where <math>p_{Z\mid X}(\cdot\mid x;\theta )</math> is the conditional distribution of the unobserved data given the observed data <math>x</math> and <math>D_{KL}</math> is the [[Kullback–Leibler divergence]]. Then the steps in the EM algorithm may be viewed as: :''Expectation step'': Choose <math>q</math> to maximize <math>F</math>: ::<math> q^{(t)} = \operatorname{arg\,max}_q \ F(q,\theta^{(t)}) </math> :''Maximization step'': Choose <math>\theta</math> to maximize <math>F</math>: ::<math> \theta^{(t+1)} = \operatorname{arg\,max}_\theta \ F(q^{(t)},\theta) </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)