Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Extremophile
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Metals === ''[[Acidithiubacillus ferroxidans]]'' has been shown to be effective in remediating mercury in acidic soil due to its ''merA'' gene making it mercury resistant.<ref>{{Cite journal |last1=Takeuchi |first1=Fumiaki |last2=Iwahori |first2=Kenji |last3=Kamimura |first3=Kazuo |last4=Negishi |first4=Atsunori |last5=Maeda |first5=Terunobu |last6=Sugio |first6=Tsuyoshi |date=January 2001 |title=Volatilization of Mercury under Acidic Conditions from Mercury-polluted Soil by a Mercury-resistant Acidithiobacillus ferrooxidans SUG 2-2 |journal=Bioscience, Biotechnology, and Biochemistry |volume=65 |issue=9 |pages=1981β86 |doi=10.1271/bbb.65.1981 |issn=0916-8451 |pmid=11676009 |s2cid=2158906|doi-access=free }}</ref> Industrial effluent contain high levels of metals that can be detrimental to both human and ecosystem health.<ref>{{Cite journal |last=Nagajyoti |first=P.C. |date=2008 |title=Heavy metal toxicity: Industrial Effluent Effect on Groundnut (Arachis hypogaea L.) Seedlings |journal=Journal of Applied Sciences Research |volume=4 |issue=1 |pages=110β21}}</ref><ref>{{Cite journal |last=Fakayode |first=S.O. |date=2005 |title=Impact assessment of industrial effluent on water quality of the receiving Alaro River in Ibadan, Nigeria. |journal=African Journal of Environmental Assessment and Management |volume=10 |pages=1β13}}</ref> In extreme heat environments the extremophile ''[[Geobacillus thermodenitrificans]]'' has been shown to effectively manage the concentration of these metals within twelve hours of introduction.<ref>{{Cite journal |last1=Chatterjee |first1=S.K. |last2=Bhattacharjee |first2=I. |last3=Chandra |first3=G. |date=March 2010 |title=Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans |journal=Journal of Hazardous Materials |volume=175 |issue=1β3 |pages=117β25 |doi=10.1016/j.jhazmat.2009.09.136 |issn=0304-3894 |pmid=19864059}}</ref> Some acidophilic microorganisms are effective at metal remediation in acidic environments due to proteins found in their periplasm, not present in any mesophilic organisms, allowing them to protect themselves from high proton concentrations.<ref>{{Cite journal |last=Chi |first=A. |date=2007 |title=Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans: a high throughput proteomics analysis |journal=Molecular & Cellular Proteomics |volume=6 |issue=12 |pages=2239β51 |doi=10.1074/mcp.M700042-MCP200 |doi-access=free |pmc=4631397 |pmid=17911085}}</ref> [[Paddy field|Rice paddies]] are highly oxidative environments that can produce high levels of lead or cadmium. ''[[Deinococcus radiodurans]]'' are resistant to the harsh conditions of the environment and are therefore candidate species for limiting the extent of contamination of these metals.<ref>{{Cite journal |last1=Dai |first1=Shang |last2=Chen |first2=Qi |last3=Jiang |first3=Meng |last4=Wang |first4=Binqiang |last5=Xie |first5=Zhenming |last6=Yu |first6=Ning |last7=Zhou |first7=Yulong |last8=Li |first8=Shan |last9=Wang |first9=Liangyan |last10=Hua |first10=Yuejin |last11=Tian |first11=Bing |date=September 2021 |title=Colonized extremophile Deinococcus radiodurans alleviates toxicity of cadmium and lead by suppressing heavy metal accumulation and improving antioxidant system in rice |journal=Environmental Pollution |volume=284 |pages=117127 |doi=10.1016/j.envpol.2021.117127 |issn=0269-7491 |pmid=33892465|bibcode=2021EPoll.28417127D }}</ref> Some bacteria are known to also use [[Rare-earth element|rare earth elements]] on their biological processes. For example, ''[[Methylacidiphilum fumariolicum]]'', ''[[Methylorubrum extorquens]],'' and ''[[Methylobacterium radiotolerans]]'' are known to be able to use [[Lanthanide#Biological effects|lanthanides]] as cofactors to increase their [[methanol dehydrogenase]] activity.<ref>{{Cite journal |last1=Phi |first1=Manh Tri |last2=Singer |first2=Helena |last3=ZΓ€h |first3=Felix |last4=Haisch |first4=Christoph |last5=Schneider |first5=Sabine |last6=Op den Camp |first6=Huub J. M. |last7=Daumann |first7=Lena J. |date=2024-03-01 |title=Assessing Lanthanide-Dependent Methanol Dehydrogenase Activity: The Assay Matters |url=https://pubmed.ncbi.nlm.nih.gov/38269599/ |journal=ChemBioChem |volume=25 |issue=5 |pages=e202300811 |doi=10.1002/cbic.202300811 |issn=1439-7633 |pmid=38269599}}</ref><ref>{{Citation |last1=Good |first1=Nathan M. |date=2021-01-01 |volume=650 |pages=97β118 |editor-last=Cotruvo |editor-first=Joseph A. |url=https://www.sciencedirect.com/science/article/pii/S0076687921000719 |access-date=2024-04-10 |publisher=Academic Press |last2=Martinez-Gomez |first2=N. Cecilia|title=Rare-Earth Element Biochemistry: Methanol Dehydrogenases and Lanthanide Biology |chapter=Expression, purification and testing of lanthanide-dependent enzymes in Methylorubrum extorquens AM1 |series=Methods in Enzymology |doi=10.1016/bs.mie.2021.02.001 |pmid=33867027 |isbn=978-0-12-823856-1 |url-access=subscription }}</ref>{{citation needed|date=May 2023}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)