Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fibonacci sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Limit of consecutive quotients === [[Johannes Kepler]] observed that the ratio of consecutive Fibonacci numbers [[convergent sequence|converges]]. He wrote that "as 5 is to 8 so is 8 to 13, practically, and as 8 is to 13, so is 13 to 21 almost", and concluded that these ratios approach the golden ratio <math>\varphi\colon </math> <ref>{{Citation|last=Kepler |first=Johannes |title=A New Year Gift: On Hexagonal Snow |year=1966 |isbn=978-0-19-858120-8 |publisher=Oxford University Press |page= 92}}</ref><ref>{{Citation | title = Strena seu de Nive Sexangula | year = 1611}}</ref> <math display=block>\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\varphi.</math> This convergence holds regardless of the starting values <math>U_0</math> and <math>U_1</math>, unless <math>U_1 = -U_0/\varphi</math>. This can be verified using [[#Binet's formula|Binet's formula]]. For example, the initial values 3 and 2 generate the sequence 3, 2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, ... . The ratio of consecutive elements in this sequence shows the same convergence towards the golden ratio. In general, <math>\lim_{n\to\infty}\frac{F_{n+m}}{F_n}=\varphi^m </math>, because the ratios between consecutive Fibonacci numbers approaches <math>\varphi</math>. : [[File:Fibonacci tiling of the plane and approximation to Golden Ratio.gif|thumb|upright=2.2|left|Successive tilings of the plane and a graph of approximations to the golden ratio calculated by dividing each Fibonacci number by the previous]] {{Clear}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)