Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Functional derivative
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Coulomb potential energy functional==== The '''electron-nucleus''' potential energy is <math display="block">V[\rho] = \int \frac{\rho(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r}.</math> Applying the definition of functional derivative, <math display="block">\begin{align} \int \frac{\delta V}{\delta \rho(\boldsymbol{r})} \ \phi(\boldsymbol{r}) \ d\boldsymbol{r} & {} = \left [ \frac{d}{d\varepsilon} \int \frac{\rho(\boldsymbol{r}) + \varepsilon \phi(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r} \right ]_{\varepsilon=0} \\[1ex] & {} = \int \frac {\phi(\boldsymbol{r})} {|\boldsymbol{r}|} \ d\boldsymbol{r} \, . \end{align}</math> So, <math display="block"> \frac{\delta V}{\delta \rho(\boldsymbol{r})} = \frac{1}{|\boldsymbol{r}|} \ . </math> The functional derivative of the classical part of the '''electron-electron interaction''' (often called Hartree energy) is <math display="block">J[\rho] = \frac{1}{2}\iint \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |}\, d\mathbf{r} d\mathbf{r}' \, .</math> From the [[#Functional derivative|definition of the functional derivative]], <math display="block">\begin{align} \int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r} & {} = \left [ \frac {d \ }{d\varepsilon} \, J[\rho + \varepsilon\phi] \right ]_{\varepsilon = 0} \\ & {} = \left [ \frac {d \ }{d\varepsilon} \, \left ( \frac{1}{2}\iint \frac {[\rho(\boldsymbol{r}) + \varepsilon \phi(\boldsymbol{r})] \, [\rho(\boldsymbol{r}') + \varepsilon \phi(\boldsymbol{r}')] }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \right ) \right ]_{\varepsilon = 0} \\ & {} = \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}') \phi(\boldsymbol{r}) }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' + \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}) \phi(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \\ \end{align}</math> The first and second terms on the right hand side of the last equation are equal, since {{math|'''''r'''''}} and {{math|'''''r′'''''}} in the second term can be interchanged without changing the value of the integral. Therefore, <math display="block"> \int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r} = \int \left ( \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \right ) \phi(\boldsymbol{r}) d\boldsymbol{r} </math> and the functional derivative of the electron-electron Coulomb potential energy functional {{math|''J''}}[''Ο''] is,<ref name=ParrYangP248A.11>{{harvp|Parr|Yang|1989|loc=p. 248, Eq. A.11}}.</ref> <math display="block"> \frac{\delta J}{\delta\rho(\boldsymbol{r})} = \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \, . </math> The second functional derivative is <math display="block">\frac{\delta^2 J[\rho]}{\delta \rho(\mathbf{r}')\delta\rho(\mathbf{r})} = \frac{\partial}{\partial \rho(\mathbf{r}')} \left ( \frac{\rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |} \right ) = \frac{1}{| \mathbf{r}-\mathbf{r}' |}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)