Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gauss–Markov theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Strict exogeneity=== For all <math>n</math> observations, the expectation—conditional on the regressors—of the error term is zero:<ref>{{cite book |first=Fumio |last=Hayashi |author-link=Fumio Hayashi |title=Econometrics |publisher=Princeton University Press |year=2000 |isbn=0-691-01018-8 |page=7 |url=https://books.google.com/books?id=QyIW8WUIyzcC&pg=PA7 }}</ref> :<math>\operatorname{E}[\,\varepsilon_{i}\mid \mathbf{X} ] = \operatorname{E}[\,\varepsilon_{i}\mid \mathbf{x}_{1}, \dots, \mathbf{x}_{n} ] = 0.</math> where <math>\mathbf{x}_i = \begin{bmatrix} x_{i1} & x_{i2} & \cdots & x_{ik} \end{bmatrix}^{\operatorname{T}}</math> is the data vector of regressors for the ''i''th observation, and consequently <math>\mathbf{X} = \begin{bmatrix} \mathbf{x}_{1}^{\operatorname{T}} & \mathbf{x}_{2}^{\operatorname{T}} & \cdots & \mathbf{x}_{n}^{\operatorname{T}} \end{bmatrix}^{\operatorname{T}}</math> is the data matrix or design matrix. Geometrically, this assumption implies that <math>\mathbf{x}_{i}</math> and <math>\varepsilon_{i}</math> are [[Orthogonality|orthogonal]] to each other, so that their [[Dot product|inner product]] (i.e., their cross moment) is zero. :<math>\operatorname{E}[\,\mathbf{x}_{j} \cdot \varepsilon_{i}\,] = \begin{bmatrix} \operatorname{E}[\,{x}_{j1} \cdot \varepsilon_{i}\,] \\ \operatorname{E}[\,{x}_{j2} \cdot \varepsilon_{i}\,] \\ \vdots \\ \operatorname{E}[\,{x}_{jk} \cdot \varepsilon_{i}\,] \end{bmatrix} = \mathbf{0} \quad \text{for all } i, j \in n</math> This assumption is violated if the explanatory variables are [[Errors-in-variables models|measured with error]], or are [[Endogeneity (econometrics)|endogenous]].<ref>{{cite book |first=John |last=Johnston |author-link=John Johnston (econometrician) |title=Econometric Methods |location=New York |publisher=McGraw-Hill |edition=Second |year=1972 |isbn=0-07-032679-7 |pages=[https://archive.org/details/econometricmetho0000john_t7q9/page/267 267–291] |url=https://archive.org/details/econometricmetho0000john_t7q9/page/267 }}</ref> Endogeneity can be the result of [[wikt:simultaneity|simultaneity]], where causality flows back and forth between both the dependent and independent variable. [[Instrumental variable]] techniques are commonly used to address this problem.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)