Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gauss–Newton algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Related algorithms == In a [[quasi-Newton method]], such as that due to [[Davidon–Fletcher–Powell formula|Davidon, Fletcher and Powell]] or Broyden–Fletcher–Goldfarb–Shanno ([[BFGS method]]) an estimate of the full Hessian <math display="inline">\frac{\partial^2 S}{\partial \beta_j \partial\beta_k}</math> is built up numerically using first derivatives <math display="inline">\frac{\partial r_i}{\partial\beta_j}</math> only so that after ''n'' refinement cycles the method closely approximates to Newton's method in performance. Note that quasi-Newton methods can minimize general real-valued functions, whereas Gauss–Newton, Levenberg–Marquardt, etc. fits only to nonlinear least-squares problems. Another method for solving minimization problems using only first derivatives is [[gradient descent]]. However, this method does not take into account the second derivatives even approximately. Consequently, it is highly inefficient for many functions, especially if the parameters have strong interactions.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)