Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geographic coordinate conversion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Newton–Raphson method ==== The following Bowring's irrational geodetic-latitude equation,<ref>{{cite journal |last=Bowring |first=B. R. |title=Transformation from Spatial to Geographical Coordinates |journal=Surv. Rev. |volume=23 |issue=181 |pages=323–327 |year=1976 |doi=10.1179/003962676791280626 }}</ref> derived simply from the above properties, is efficient to be solved by [[Newton–Raphson]] iteration method:<ref>{{cite journal |last=Fukushima |first=T. |title=Fast Transform from Geocentric to Geodetic Coordinates |journal=J. Geod. |volume=73 |issue=11 |pages=603–610 |year=1999 |doi=10.1007/s001900050271 |bibcode=1999JGeod..73..603F |s2cid=121816294 }} (Appendix B)</ref><ref>{{cite book|first1=J. J. |title=Proceedings of the IEEE 1997 National Aerospace and Electronics Conference. NAECON 1997|volume=2|pages=646–650|last1=Sudano|doi=10.1109/NAECON.1997.622711|chapter=An exact conversion from an earth-centered coordinate system to latitude, longitude and altitude|year=1997|isbn=0-7803-3725-5|s2cid=111028929 }}</ref> : <math>\kappa - 1 - \frac{e^2 a\kappa}{\sqrt{p^2 + \left(1 - e^2\right) Z^2 \kappa^2}} = 0,</math> where <math>\kappa = \frac{p}{Z} \tan \phi</math> and <math>p = \sqrt{X^2 + Y^2}</math> as before. The height is calculated as: : <math>\begin{align} h &= e^{-2} \left(\kappa^{-1} - {\kappa_0}^{-1}\right) \sqrt{p^2 + Z^2 \kappa^2}, \\ \kappa_0 &\triangleq \left(1 - e^2\right)^{-1}. \end{align}</math> The iteration can be transformed into the following calculation: : <math>\kappa_{i+1} = \frac{c_i + \left(1 - e^2\right) Z^2 \kappa_i^3}{c_i - p^2} = 1 + \frac{p^2 + \left(1 - e^2\right) Z^2 \kappa_i^3}{c_i - p^2},</math> where <math>c_i = \frac{\left(p^2 + \left(1 - e^2\right) Z^2 \kappa_i ^2\right)^\frac{3}{2}}{ae^2} .</math> The constant <math>\,\kappa_0</math> is a good starter value for the iteration when <math>h \approx 0</math>. Bowring showed that the single iteration produces a sufficiently accurate solution. He used extra trigonometric functions in his original formulation. <!-- : <math>\kappa \approx \kappa_1 = \left(c + \frac{z^2}{1 - e^2 }\right)/\left(c - \left(1 - e^2\right)\left(x^2 + y^2\right)\right),</math> where : <math>c = \frac{\left(\left(1 - e^2\right)\left(x^2 + y^2\right) + z^2\right)^\frac{3}{2}}{ae^2 \sqrt{1 - e^2}}.</math> --><!-- For <math>h = 0</math>, <math>\kappa = \frac{1}{1 - e^2}</math>, which is a good starter for the iteration. Bowring showed that the single iteration produces the sufficiently accurate solution under the condition of <math>h \approx 0</math>. -->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)