Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geometrization conjecture
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Nil geometry=== {{see also|Nilmanifold}} This fibers over ''E''<sup>2</sup>, and so is sometimes known as "Twisted ''E''<sup>2</sup> Γ R". It is the geometry of the [[Heisenberg group]]. The point stabilizer is O(2, '''R'''). The group ''G'' has 2 components, and is a semidirect product of the 3-dimensional Heisenberg group by the group O(2, '''R''') of isometries of a circle. Compact manifolds with this geometry include the mapping torus of a [[Dehn twist]] of a 2-torus, or the quotient of the Heisenberg group by the "integral Heisenberg group". This geometry can be modeled as a left invariant metric on the [[Bianchi classification|Bianchi group of type II]]. Finite volume manifolds with this geometry are compact and orientable and have the structure of a [[Seifert fiber space]]. The classification of such manifolds is given in the article on [[Seifert fiber space]]s. Under normalized Ricci flow, compact manifolds with this geometry converge to '''R'''<sup>2</sup> with the flat metric.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)