Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gradient descent
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Fast gradient methods=== [[Yurii Nesterov]] has proposed<ref>{{cite book |first=Yurii |last=Nesterov |author-link=Yurii Nesterov |title=Introductory Lectures on Convex Optimization : A Basic Course |publisher=Springer |year=2004 |isbn=1-4020-7553-7 }}</ref> a simple modification that enables faster convergence for convex problems and has been since further generalized. For unconstrained smooth problems, the method is called the [[fast gradient method]] (FGM) or the [[accelerated gradient method]] (AGM). Specifically, if the differentiable function <math>F</math> is convex and <math>\nabla F</math> is [[Lipschitz continuity|Lipschitz]], and it is not assumed that <math>F</math> is [[Convex function#Strongly convex functions|strongly convex]], then the error in the objective value generated at each step <math>k</math> by the gradient descent method will be [[Big O notation|bounded by]] <math display="inline">\mathcal{O}\left({k^{-1}}\right)</math>. Using the Nesterov acceleration technique, the error decreases at <math display="inline">\mathcal{O}\left({k^{-2}}\right)</math>.<ref>{{cite web |url=https://www.seas.ucla.edu/~vandenbe/236C/lectures/fgrad.pdf |title=Fast Gradient Methods |work=Lecture notes for EE236C at UCLA |first=Lieven |last=Vandenberghe |date=2019 }}</ref><ref>{{Cite journal |last=Walkington |first=Noel J. |date=2023 |title=Nesterov's Method for Convex Optimization |url=https://epubs.siam.org/doi/10.1137/21M1390037 |journal=SIAM Review |language=en |volume=65 |issue=2 |pages=539β562 |doi=10.1137/21M1390037 |issn=0036-1445}}</ref> It is known that the rate <math>\mathcal{O}\left({k^{-2}}\right)</math> for the decrease of the [[loss function|cost function]] is optimal for first-order optimization methods. Nevertheless, there is the opportunity to improve the algorithm by reducing the constant factor. The [[optimized gradient method]] (OGM)<ref>{{cite journal |first1=D. |last1=Kim |first2=J. A. |last2=Fessler |title=Optimized First-order Methods for Smooth Convex Minimization |journal=[[Mathematical Programming]] |volume=151 |issue=1β2 |pages=81β107 |year=2016 |doi=10.1007/s10107-015-0949-3 |pmid=27765996 |pmc=5067109 |arxiv=1406.5468 |s2cid=207055414 }}</ref> reduces that constant by a factor of two and is an optimal first-order method for large-scale problems.<ref>{{cite journal |first=Yoel |last=Drori |date=2017 |title=The Exact Information-based Complexity of Smooth Convex Minimization |journal=Journal of Complexity |volume=39 |pages=1β16 |doi=10.1016/j.jco.2016.11.001 |arxiv=1606.01424 |s2cid=205861966 }}</ref> For constrained or non-smooth problems, Nesterov's FGM is called the [[fast proximal gradient method]] (FPGM), an acceleration of the [[proximal gradient method]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)