Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Harshad number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Sums of harshad numbers == Every natural number not exceeding one billion is either a harshad number or the sum of two harshad numbers. Conditional to a technical hypothesis on the [[zero of a function|zeros]] of certain [[Dedekind zeta function]]s, Sanna proved that there exists a positive integer <math>k</math> such that every natural number is the sum of at most <math>k</math> harshad numbers, that is, the set of harshad numbers is an [[additive basis]].<ref>{{citation|first1=Carlo|last1=Sanna|title=Additive bases and Niven numbers|journal=[[Bulletin of the Australian Mathematical Society]]|volume=104|issue=3|date=March 2021|pages=373β380|doi=10.1017/S0004972721000186|s2cid=231639019 |doi-access=free|arxiv=2101.07593}}.</ref> The number of ways that each natural number 1, 2, 3, ... can be written as sum of two harshad numbers is: :0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 3, 2, 4, 3, 3, 4, 3, 3, 5, 3, 4, 5, 4, 4, 7, 4, 5, 6, 5, 3, 7, 4, 4, 6, 4, 2, 7, 3, 4, 5, 4, 3, 7, 3, 4, 5, 4, 3, 8, 3, 4, 6, 3, 3, 6, 2, 5, 6, 5, 3, 8, 4, 4, 6, ... {{OEIS|id=A337853}}. The smallest number that can be written in exactly 1, 2, 3, ... ways as the sum of two harshad numbers is: :2, 4, 6, 8, 10, 51, 48, 72, 108, 126, 90, 138, 144, 120, 198, 162, 210, 216, 315, 240, 234, 306, 252, 372, 270, 546, 360, 342, 444, 414, 468, 420, 642, 450, 522, 540, 924, 612, 600, 666, 630, 888, 930, 756, 840, 882, 936, 972, 1098, 1215, 1026, 1212, 1080, ... {{OEIS|id=A337854}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)