Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hartree–Fock method
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Derivation === According to the [[Slater–Condon rules]], the energy expectation value of the [[Molecular Hamiltonian#Clamped nucleus Hamiltonian|molecular electronic Hamiltonian]] <math>\hat{H}^e</math> for a [[Slater determinant]] is : <math display="inline">\begin{aligned} E[\psi^{HF}] &= \left\langle\psi^{HF}|\hat{H}^e|\psi^{HF}\right\rangle \\ &= \sum_{i=1}^N \int\text{d}\mathbf{x}_i \, \phi_i^*(\mathbf{x}_i) \hat{h}(\mathbf{x}_i) \phi_i(\mathbf{x}_i) \\ &+ \frac{1}{2} \sum_{i=1}^N\sum_{j=1}^N \int \mathrm{d}\mathbf{x}_i \int \text{d}\mathbf{x}_j \phi_i^*(\mathbf{x}_i)\phi_j^*(\mathbf{x}_j) \frac{1}{|\mathbf{x}_i-\mathbf{x}_j|}\phi_i(\mathbf{x}_i)\phi_j(\mathbf{x}_j) \\ &- \frac{1}{2} \sum_{i=1}^N\sum_{j=1}^N \int \text{d}\mathbf{x}_i \int \text{d}\mathbf{x}_j\phi_i^*(\mathbf{x}_i)\phi_j^*(\mathbf{x}_j) \frac{1}{|\mathbf{x}_i-\mathbf{x}_j|}\phi_i(\mathbf{x}_j)\phi_j(\mathbf{x}_i) \end{aligned} </math> where <math>\hat{h}</math> is the one electron operator including electronic kinetic energy and electron-nucleus Coulombic interaction, and : <math>\begin{aligned} \psi^{HF} = \psi(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_1(\mathbf{x}_1) & \phi_2(\mathbf{x}_1) & \cdots & \phi_N(\mathbf{x}_1) \\ \phi_1(\mathbf{x}_2) & \phi_2(\mathbf{x}_2) & \cdots & \phi_N(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(\mathbf{x}_N) & \phi_2(\mathbf{x}_N) & \cdots & \phi_N(\mathbf{x}_N) \end{vmatrix}. \end{aligned}</math> To derive the Hartree-Fock equation we minimize the energy functional for N electrons with orthonormal constraints. : <math>\delta E[\phi_k^*(x_k)] = \delta \left\langle\psi^{HF}|\hat{H}^e|\psi^{HF}\right\rangle - \delta\left[\sum_{i=1}^N \sum_{j=1}^N \lambda_{ij} \left( \left\langle\phi_i, \phi_j\right\rangle - \delta_{ij}\right)\right] \stackrel{!}{=}\, 0,</math> We choose a basis set <math>\phi_i(x_i)</math> in which the [[Lagrange multiplier]] matrix <math>\lambda_{ij}</math> becomes diagonal, i.e. <math>\lambda_{ij} = \epsilon_i \delta_{ij}</math>. Performing the [[Functional derivative|variation]], we obtain : <math>\begin{aligned} \delta E[\phi_k^*(x_k)] &= \sum_{i=1}^N \int\text{d}\mathbf{x}_i \, \hat{h}(\mathbf{x}_i) \phi_i(\mathbf{x}_i) \delta(\mathbf{x}_i -\mathbf{x}_k) \delta_{ik}\\ &+ \sum_{i=1}^N\sum_{j=1}^N \int \mathrm{d}\mathbf{x}_i \int \text{d}\mathbf{x}_j\phi_j^*(\mathbf{x}_j) \frac{1}{|\mathbf{x}_i-\mathbf{x}_j|}\phi_i(\mathbf{x}_i)\phi_j(\mathbf{x}_j) \delta(\mathbf{x}_i-\mathbf{x}_k)\delta_{ik}\\ &- \sum_{i=1}^N\sum_{j=1}^N \int \text{d}\mathbf{x}_i \int \text{d}\mathbf{x}_j\phi_j^*(\mathbf{x}_j) \frac{1}{|\mathbf{x}_i-\mathbf{x}_j|}\phi_i(\mathbf{x}_j)\phi_j(\mathbf{x}_i) \delta(\mathbf{x}_i-\mathbf{x}_k)\delta_{ik}\\ &- \sum_{i=1}^N \epsilon_i \int \text{d}\mathbf{x}_i \, \phi_i(\mathbf{x}_i) \delta(\mathbf{x}_i-\mathbf{x}_k)\delta_{ik}\\ &= \hat{h}(\mathbf{x}_k) \phi_k(\mathbf{x}_k)\\ &+ \sum_{j=1}^N \int \text{d}\mathbf{x}_j\phi_j^*(\mathbf{x}_j) \frac{1}{|\mathbf{x}_k-\mathbf{x}_j|}\phi_k(\mathbf{x}_k)\phi_j(\mathbf{x}_j)\\ &- \sum_{j=1}^N \int \text{d}\mathbf{x}_j\phi_j^*(\mathbf{x}_j) \frac{1}{|\mathbf{x}_k-\mathbf{x}_j|}\phi_k(\mathbf{x}_j)\phi_j(\mathbf{x}_k)\\ &- \epsilon_k \phi_k(\mathbf{x}_k)=0. \\ \end{aligned}</math> The factor 1/2 before the double integrals in the molecular Hamiltonian drops out due to symmetry and the product rule. We may define the [[Fock matrix|Fock operator]] to rewrite the equation : <math>\hat{F}(\mathbf{x}_k)\phi_k(\mathbf{x}_k) \equiv \left[ \hat{h}(\mathbf{x}_k) + \hat{J}(\mathbf{x}_k) - \hat{K}(\mathbf{x}_k) \right]\phi_k(\mathbf{x}_k) = \epsilon_k \phi_k(\mathbf{x}_k),</math> where the [[Coulomb operator]] <math>\hat{J}(\mathbf{x}_k)</math> and the [[exchange operator]] <math>\hat{K}(\mathbf{x}_k)</math> are defined as follows : <math>\begin{aligned} \hat{J}(\mathbf{x_k}) &\equiv \sum_{j=1}^N \int \mathrm{d}\mathbf{x}_j \frac{\phi_j^*(\mathbf{x}_j) \phi_j(\mathbf{x}_j)}{|\mathbf{x}_k-\mathbf{x}_j|}= \sum_{j=1}^N \int \mathrm{d}\mathbf{x}_j \frac{\rho(\mathbf{x}_j)}{|\mathbf{x}_k-\mathbf{x}_j|},\\ \hat{K}(\mathbf{x_k})\phi_{k}(\mathbf{x}_k) &\equiv \sum_{j=1}^N \phi_{j}(\mathbf{x}_k) \int \text{d}\mathbf{x}_j \frac{\phi_j^*(\mathbf{x}_j) \phi_k(\mathbf{x}_j)}{|\mathbf{x}_k-\mathbf{x}_j|}.\\ \end{aligned}</math> The exchange operator has no classical analogue and can only be defined as an integral operator. The solution <math>\phi_k</math> and <math>\epsilon_k</math> are called molecular orbital and orbital energy respectively. Although Hartree-Fock equation appears in the form of a eigenvalue problem, the Fock operator itself depends on <math>\phi</math> and must be solved by a different technique.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)