Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Helmholtz decomposition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Longitudinal and transverse fields === A terminology often used in physics refers to the curl-free component of a vector field as the '''longitudinal component''' and the divergence-free component as the '''transverse component'''.<ref name="stewart2011"/> This terminology comes from the following construction: Compute the three-dimensional [[Fourier transform]] <math>\hat\mathbf{F}</math> of the vector field <math>\mathbf{F}</math>. Then decompose this field, at each point '''k''', into two components, one of which points longitudinally, i.e. parallel to '''k''', the other of which points in the transverse direction, i.e. perpendicular to '''k'''. So far, we have <math display="block">\hat\mathbf{F} (\mathbf{k}) = \hat\mathbf{F}_t (\mathbf{k}) + \hat\mathbf{F}_l (\mathbf{k})</math> <math display="block">\mathbf{k} \cdot \hat\mathbf{F}_t(\mathbf{k}) = 0.</math> <math display="block">\mathbf{k} \times \hat\mathbf{F}_l(\mathbf{k}) = \mathbf{0}.</math> Now we apply an inverse Fourier transform to each of these components. Using properties of Fourier transforms, we derive: <math display="block">\mathbf{F}(\mathbf{r}) = \mathbf{F}_t(\mathbf{r})+\mathbf{F}_l(\mathbf{r})</math> <math display="block">\nabla \cdot \mathbf{F}_t (\mathbf{r}) = 0</math> <math display="block">\nabla \times \mathbf{F}_l (\mathbf{r}) = \mathbf{0}</math> Since <math>\nabla\times(\nabla\Phi)=0</math> and <math>\nabla\cdot(\nabla\times\mathbf{A})=0</math>, we can get <math display="block">\mathbf{F}_t=\nabla\times\mathbf{A}=\frac{1}{4\pi}\nabla\times\int_V\frac{\nabla'\times\mathbf{F}}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math> <math display="block">\mathbf{F}_l=-\nabla\Phi=-\frac{1}{4\pi}\nabla\int_V\frac{\nabla'\cdot\mathbf{F}}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math> so this is indeed the Helmholtz decomposition.<ref name="littlejohn"/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)