Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Huffman coding
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Decompression=== Generally speaking, the process of decompression is simply a matter of translating the stream of prefix codes to individual byte values, usually by traversing the Huffman tree node by node as each bit is read from the input stream (reaching a leaf node necessarily terminates the search for that particular byte value). Before this can take place, however, the Huffman tree must be somehow reconstructed. In the simplest case, where character frequencies are fairly predictable, the tree can be preconstructed (and even statistically adjusted on each compression cycle) and thus reused every time, at the expense of at least some measure of compression efficiency. Otherwise, the information to reconstruct the tree must be sent a priori. A naive approach might be to prepend the frequency count of each character to the compression stream. Unfortunately, the overhead in such a case could amount to several kilobytes, so this method has little practical use. If the data is compressed using [[canonical Huffman code|canonical encoding]], the compression model can be precisely reconstructed with just <math>B\cdot 2^B</math> bits of information (where {{mvar|B}} is the number of bits per symbol). Another method is to simply prepend the Huffman tree, bit by bit, to the output stream. For example, assuming that the value of 0 represents a parent node and 1 a leaf node, whenever the latter is encountered the tree building routine simply reads the next 8 bits to determine the character value of that particular leaf. The process continues recursively until the last leaf node is reached; at that point, the Huffman tree will thus be faithfully reconstructed. The overhead using such a method ranges from roughly 2 to 320 bytes (assuming an 8-bit alphabet). Many other techniques are possible as well. In any case, since the compressed data can include unused "trailing bits" the decompressor must be able to determine when to stop producing output. This can be accomplished by either transmitting the length of the decompressed data along with the compression model or by defining a special code symbol to signify the end of input (the latter method can adversely affect code length optimality, however).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)