Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Independent component analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Identifiability === The independent components are identifiable up to a permutation and scaling of the sources.<ref>Theorem 11, Comon, Pierre. "Independent component analysis, a new concept?." Signal processing 36.3 (1994): 287-314.</ref> This identifiability requires that: * At most one of the sources <math>s_k</math> is Gaussian, * The number of observed mixtures, <math>m</math>, must be at least as large as the number of estimated components <math>n</math>: <math>m \ge n</math>. It is equivalent to say that the mixing matrix <math>\boldsymbol{A}</math> must be of full [[rank (linear algebra)|rank]] for its inverse to exist.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)