Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Initial topology
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Initial uniform structure=== {{Main|Uniform space}} If <math>\left(\mathcal{U}_i\right)_{i \in I}</math> is a family of [[uniform structure]]s on <math>X</math> indexed by <math>I \neq \varnothing,</math> then the {{em|[[least upper bound]] uniform structure}} of <math>\left(\mathcal{U}_i\right)_{i \in I}</math> is the coarsest uniform structure on <math>X</math> that is finer than each <math>\mathcal{U}_i.</math> This uniform always exists and it is equal to the [[Filter (set theory)|filter]] on <math>X \times X</math> generated by the [[filter subbase]] <math>{\textstyle \bigcup\limits_{i \in I} \mathcal{U}_i}.</math>{{sfn|Grothendieck|1973|p=3}} If <math>\tau_i</math> is the topology on <math>X</math> induced by the uniform structure <math>\mathcal{U}_i</math> then the topology on <math>X</math> associated with least upper bound uniform structure is equal to the least upper bound topology of <math>\left(\tau_i\right)_{i \in I}.</math>{{sfn|Grothendieck|1973|p=3}} Now suppose that <math>\left\{f_i : X \to Y_i\right\}</math> is a family of maps and for every <math>i \in I,</math> let <math>\mathcal{U}_i</math> be a uniform structure on <math>Y_i.</math> Then the {{em|initial uniform structure of the <math>Y_i</math> by the mappings <math>f_i</math>}} is the unique coarsest uniform structure <math>\mathcal{U}</math> on <math>X</math> making all <math>f_i : \left(X, \mathcal{U}\right) \to \left(Y_i, \mathcal{U}_i\right)</math> [[uniformly continuous]].{{sfn|Grothendieck|1973|p=3}} It is equal to the least upper bound uniform structure of the <math>I</math>-indexed family of uniform structures <math>f_i^{-1}\left(\mathcal{U}_i\right)</math> (for <math>i \in I</math>).{{sfn|Grothendieck|1973|p=3}} The topology on <math>X</math> induced by <math>\mathcal{U}</math> is the coarsest topology on <math>X</math> such that every <math>f_i : X \to Y_i</math> is continuous.{{sfn|Grothendieck|1973|p=3}} The initial uniform structure <math>\mathcal{U}</math> is also equal to the coarsest uniform structure such that the identity mappings <math>\operatorname{id} : \left(X, \mathcal{U}\right) \to \left(X, f_i^{-1}\left(\mathcal{U}_i\right)\right)</math> are uniformly continuous.{{sfn|Grothendieck|1973|p=3}} '''Hausdorffness''': The topology on <math>X</math> induced by the initial uniform structure <math>\mathcal{U}</math> is [[Hausdorff space|Hausdorff]] if and only if for whenever <math>x, y \in X</math> are distinct (<math>x \neq y</math>) then there exists some <math>i \in I</math> and some entourage <math>V_i \in \mathcal{U}_i</math> of <math>Y_i</math> such that <math>\left(f_i(x), f_i(y)\right) \not\in V_i.</math>{{sfn|Grothendieck|1973|p=3}} Furthermore, if for every index <math>i \in I,</math> the topology on <math>Y_i</math> induced by <math>\mathcal{U}_i</math> is Hausdorff then the topology on <math>X</math> induced by the initial uniform structure <math>\mathcal{U}</math> is Hausdorff if and only if the maps <math>\left\{f_i : X \to Y_i\right\}</math> [[#separate points|separate points]] on <math>X</math>{{sfn|Grothendieck|1973|p=3}} (or equivalently, if and only if the [[#evaluation map|evaluation map]] <math display=inline>f : X \to \prod_i Y_i</math> is injective) '''Uniform continuity''': If <math>\mathcal{U}</math> is the initial uniform structure induced by the mappings <math>\left\{f_i : X \to Y_i\right\},</math> then a function <math>g</math> from some uniform space <math>Z</math> into <math>(X, \mathcal{U})</math> is [[uniformly continuous]] if and only if <math>f_i \circ g : Z \to Y_i</math> is uniformly continuous for each <math>i \in I.</math>{{sfn|Grothendieck|1973|p=3}} '''Cauchy filter''': A [[Filter (set theory)|filter]] <math>\mathcal{B}</math> on <math>X</math> is a [[Cauchy filter]] on <math>(X, \mathcal{U})</math> if and only if <math>f_i\left(\mathcal{B}\right)</math> is a Cauchy prefilter on <math>Y_i</math> for every <math>i \in I.</math>{{sfn|Grothendieck|1973|p=3}} '''Transitivity of the initial uniform structure''': If the word "topology" is replaced with "uniform structure" in the statement of "[[#Transitivity of the initial topology|transitivity of the initial topology]]" given above, then the resulting statement will also be true.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)