Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inverse trigonometric functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Relationships between trigonometric functions and inverse trigonometric functions === Trigonometric functions of inverse trigonometric functions are tabulated below. A quick way to derive them is by considering the geometry of a right-angled triangle, with one side of length 1 and another side of length <math>x,</math> then applying the [[Pythagorean theorem]] and definitions of the trigonometric ratios. It is worth noting that for arcsecant and arccosecant, the diagram assumes that <math>x</math> is positive, and thus the result has to be corrected through the use of [[absolute value]]s and the [[Sign function|signum]] (sgn) operation. {|class="wikitable" |- !<math>\theta</math> !<math>\sin(\theta)</math> !<math>\cos(\theta)</math> !<math>\tan(\theta)</math> !Diagram |- !<math>\arcsin(x)</math> |<math>\sin(\arcsin(x)) = x </math> |<math>\cos(\arcsin(x)) = \sqrt{1-x^2}</math> |<math>\tan(\arcsin(x)) = \frac{x}{\sqrt{1-x^2}}</math> |[[File:Trigonometric functions and inverse3.svg|150px]] |- !<math>\arccos(x)</math> |<math>\sin(\arccos(x)) = \sqrt{1-x^2}</math> |<math>\cos(\arccos(x)) = x </math> |<math>\tan(\arccos(x)) = \frac{\sqrt{1-x^2}}{x}</math> |[[File:Trigonometric functions and inverse.svg|150px]] |- !<math>\arctan(x)</math> |<math>\sin(\arctan(x)) = \frac{x}{\sqrt{1+x^2}}</math> |<math>\cos(\arctan(x)) = \frac{1}{\sqrt{1+x^2}}</math> |<math>\tan(\arctan(x)) = x</math> |[[File:Trigonometric functions and inverse2.svg|150px]] |- !<math>\arccot(x)</math> |<math>\sin(\arccot(x)) = \frac{1}{\sqrt{1+x^2}}</math> |<math>\cos(\arccot(x)) = \frac{x}{\sqrt{1+x^2}}</math> |<math>\tan(\arccot(x)) = \frac{1}{x}</math> |[[File:Trigonometric functions and inverse4.svg|150px]] |- !<math>\arcsec(x)</math> |<math>\sin(\arcsec(x)) = \frac{\sqrt{x^2-1}}{|x|}</math> |<math>\cos(\arcsec(x)) = \frac{1}{x}</math> |<math>\tan(\arcsec(x)) = \sgn(x)\sqrt{x^2-1}</math> |[[File:Trigonometric functions and inverse6.svg|150px]] |- !<math>\arccsc(x)</math> |<math>\sin(\arccsc(x)) = \frac{1}{x}</math> |<math>\cos(\arccsc(x)) = \frac{\sqrt{x^2-1}}{|x|}</math> |<math>\tan(\arccsc(x)) = \frac{\sgn(x)}{\sqrt{x^2-1}}</math> |[[File:Trigonometric functions and inverse5.svg|150px]] |- |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)