Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ion source
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Gas-discharge ion sources== [[File:NASA NEXT Ion thruster.712983main NEXT LDT Thrusterhi-res full.jpg|thumb|300px|NASA's [[NEXT (ion thruster)]] space craft propulsion system]] These ion sources use a [[plasma (physics)|plasma]] source or [[electric discharge]] to create ions. ===Inductively-coupled plasma=== {{Main|inductively coupled plasma}} Ions can be created in an inductively coupled plasma, which is a plasma source in which the [[energy]] is supplied by [[electrical current]]s which are produced by [[electromagnetic induction]], that is, by time-varying [[magnetic field]]s.<ref>{{cite journal |last1=Broekaert |first1=J. A. C. |title=Inductively Coupled Plasmas in Analytical Atomic Spectrometry Eds.: A. Montaser and D. W. Golightly VCH, Weinheim, 2nd Edition. 1992, ISBN 3-527-28339-0, 984 pp., Hardcover, DM 296,β |journal=Acta Hydrochimica et Hydrobiologica |date=January 1993 |volume=21 |issue=6 |pages=327β328 |doi=10.1002/aheh.19930210610}}</ref> ===Microwave-induced plasma=== Microwave induced plasma ion sources are capable of exciting electrodeless gas discharges to create ions for trace element mass spectrometry.<ref name="Okamoto1994">{{cite journal|last1=Okamoto|first1=Yukio|title=High-sensitivity microwave-induced plasma mass spectrometry for trace element analysis|journal=Journal of Analytical Atomic Spectrometry|volume=9|issue=7|date=1994|page=745|issn=0267-9477|doi=10.1039/ja9940900745}}</ref><ref name="DouglasFrench1981">{{cite journal|last1=Douglas|first1=D. J.|last2=French|first2=J. B.|title=Elemental analysis with a microwave-induced plasma/quadrupole mass spectrometer system|journal=Analytical Chemistry|volume=53|issue=1|date=1981|pages=37β41|issn=0003-2700|doi=10.1021/ac00224a011}}</ref> A microwave plasma has high frequency [[electromagnetic radiation]] in the [[GHz]] range. It is capable of exciting electrodeless [[gas discharge]]s. If applied in [[surface-wave-sustained mode]], they are especially well suited to generate large-area plasmas of high plasma density. If they are both in surface-wave and [[resonator mode]], they can exhibit a high degree of spatial localization. This allows to spatially separate the location of plasma generations from the location of surface processing. Such a separation (together with an appropriate gas-flow scheme) may help reduce the negative effect, that particles released from a processed substrate may have on the [[plasma chemistry]] of the [[gas phase]]. ===ECR ion source=== {{Main|electron cyclotron resonance#ECR ion sources}} The ECR ion source makes use of the electron cyclotron resonance to ionize a plasma. Microwaves are injected into a volume at the frequency corresponding to the electron cyclotron resonance, defined by the magnetic field applied to a region inside the volume. The volume contains a low pressure gas. ===Glow discharge=== {{Main|glow discharge}} [[File:Quarzkapillaritron.Betrieb.jpg|thumb|right|[[Capillaritron]] with quartz capillary in operation within a vacuum chamber: On the left the glowing capillary with the plasma up to the extraction cathode and on the right behind it the bluish glowing ion beam.]] Ions can be created in an electric glow discharge. A glow discharge is a plasma formed by the passage of electric current through a low-pressure gas. It is created by applying a voltage between two metal [[electrode]]s in an evacuated chamber containing gas. When the voltage exceeds a certain value, called the [[striking voltage]], the gas forms a plasma. A [[duoplasmatron]] is a type of glow discharge ion source that consists of a [[hot cathode]] or [[cold cathode]] that produces a plasma that is used to ionize a gas.<ref name="Wolf1995"/><ref name="Lejeune1974">{{cite journal|last1=Lejeune|first1=C.|title=Theoretical and experimental study of the duoplasmatron ion source|journal=Nuclear Instruments and Methods|volume=116|issue=3|date=1974|pages=417β428|issn=0029-554X|doi=10.1016/0029-554X(74)90821-0|bibcode=1974NucIM.116..417L}}</ref> THey can produce positive or negative ions.<ref name="Aberth1967">{{cite journal|last1=Aberth|first1=William|last2=Peterson|first2=James R.|title=Characteristics of a Low Energy Duoplasmatron Negative Ion Source|journal=Review of Scientific Instruments|volume=38|issue=6|date=1967|page=745|issn=0034-6748|doi=10.1063/1.1720882|bibcode=1967RScI...38..745A}}</ref> They are used for secondary ion mass spectrometry, ion beam etching, and high-energy physics.<ref name="CoathLong1995">{{cite journal|last1=Coath|first1=C. D.|last2=Long|first2=J. V. P.|title=A high-brightness duoplasmatron ion source for microprobe secondary-ion mass spectrometry|journal=Review of Scientific Instruments|volume=66|issue=2|date=1995|page=1018|issn=0034-6748|doi=10.1063/1.1146038|bibcode=1995RScI...66.1018C|doi-access=free}}</ref><ref name="Mahoney2013">{{cite book|author=Christine M. Mahoney|title=Cluster Secondary Ion Mass Spectrometry: Principles and Applications|url=https://books.google.com/books?id=hVSqwK0uqfsC&pg=PA65|date=9 April 2013|publisher=John Wiley & Sons|isbn=978-1-118-58925-0|pages=65β}}</ref><ref name="Humphries2013">{{cite book|author=Stanley Humphries|title=Charged Particle Beams|url=https://books.google.com/books?id=1GjCAgAAQBAJ&pg=PA309|date=25 July 2013|publisher=Dover Publications|isbn=978-0-486-31585-0|pages=309β}}</ref> ===Flowing afterglow=== {{Main|plasma afterglow}} In a flowing plasma afterglow, ions are formed in a flow of inert gas, typically [[helium]] or [[argon]].<ref name="FergusonFehsenfeld1969">{{Cite book|last1=Ferguson|first1=E. E.|title=Chemical Reactions in Electrical Discharges|last2=Fehsenfeld|first2=F. C.|last3=Schmeltekopf|first3=A. L.|volume=80|date=1969|pages=83β91|issn=0065-2393|doi=10.1021/ba-1969-0080.ch006|chapter=Ion-Molecule Reaction Rates Measured in a Discharge Afterglow|series=Advances in Chemistry|isbn=978-0-8412-0081-4}}</ref><ref name="Ferguson1992">{{cite journal|last1=Ferguson|first1=Eldon E.|title=A Personal history of the early development of the flowing afterglow technique for ion-molecule reaction studies|journal=Journal of the American Society for Mass Spectrometry|volume=3|issue=5|date=1992|pages=479β486|issn=1044-0305|doi=10.1016/1044-0305(92)85024-E|pmid=24234490|url=https://zenodo.org/record/1258658|type=Submitted manuscript|doi-access=free|bibcode=1992JASMS...3..479F }}</ref><ref name="Bierbaum2014">{{cite journal|last1=Bierbaum|first1=Veronica M.|title=Go with the flow: Fifty years of innovation and ion chemistry using the flowing afterglow|journal=International Journal of Mass Spectrometry|date=2014|issn=1387-3806|doi=10.1016/j.ijms.2014.07.021|volume=377|pages=456β466|bibcode = 2015IJMSp.377..456B }}</ref> Reagents are added downstream to create ion products and study reaction rates. [[Flowing-afterglow mass spectrometry]] is used for trace gas analysis for organic compounds.<ref name="SmithΕ panΔl2005">{{cite journal|last1=Smith|first1=David|last2=Ε panΔl|first2=Patrik|title=Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis|journal=Mass Spectrometry Reviews|volume=24|issue=5|date=2005|pages=661β700|issn=0277-7037|doi=10.1002/mas.20033|pmid=15495143|bibcode = 2005MSRv...24..661S }}</ref><ref>{{Cite journal|last1=Dhooghe|first1=Frederik|last2=Vansintjan|first2=Robbe|last3=Schoon|first3=Niels|last4=Amelynck|first4=Crist|date=2012-08-30|title=Studies in search of selective detection of isomeric biogenic hexen-1-ols and hexanal by flowing afterglow tandem mass spectrometry using [H3O]+ and [NO]+ reagent ions|journal=Rapid Communications in Mass Spectrometry|language=en|volume=26|issue=16|pages=1868β1874|doi=10.1002/rcm.6294|pmid=22777789|issn=1097-0231}}</ref> ===Spark ionization=== {{Main|spark ionization}} Electric spark ionization is used to produce gas phase [[ion]]s from a solid sample. When incorporated with a mass spectrometer the complete instrument is referred to as a spark ionization mass spectrometer or as a spark source mass spectrometer (SSMS).<ref>{{cite journal |author1=H. E. Beske |author2=A. Hurrle |author3=K. P. Jochum | title = Part I. Principles of spark source mass spectrometry (SSMS) | date = 1981 | journal = [[Fresenius' Journal of Analytical Chemistry]] | volume = 309 | issue = 4 | pages = 258β261 | doi = 10.1007/BF00488596|s2cid=92433014 }}</ref> A closed drift ion source uses a radial magnetic field in an annular cavity in order to confine electrons for ionizing a gas. They are used for [[ion implantation]] and for space propulsion ([[Hall-effect thruster]]s).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)