Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jacobian matrix and determinant
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Example 3: spherical-Cartesian transformation === The transformation from [[spherical coordinate system|spherical coordinates]] {{math|(''ρ'', ''φ'', ''θ'')}}<ref>Joel Hass, Christopher Heil, and Maurice Weir. ''Thomas' Calculus Early Transcendentals, 14e''. Pearson, 2018, p. 959.</ref> to [[Cartesian coordinate system|Cartesian coordinates]] (''x'', ''y'', ''z''), is given by the function {{math|'''F''': '''R'''<sup>+</sup> × [0, ''π'') × [0, 2''π'') → '''R'''<sup>3</sup>}} with components <math display="block">\begin{align} x &= \rho \sin \varphi \cos \theta ; \\ y &= \rho \sin \varphi \sin \theta ; \\ z &= \rho \cos \varphi . \end{align}</math> The Jacobian matrix for this coordinate change is <math display="block">\mathbf J_{\mathbf F}(\rho, \varphi, \theta) = \begin{bmatrix} \dfrac{\partial x}{\partial \rho} & \dfrac{\partial x}{\partial \varphi} & \dfrac{\partial x}{\partial \theta} \\[1em] \dfrac{\partial y}{\partial \rho} & \dfrac{\partial y}{\partial \varphi} & \dfrac{\partial y}{\partial \theta} \\[1em] \dfrac{\partial z}{\partial \rho} & \dfrac{\partial z}{\partial \varphi} & \dfrac{\partial z}{\partial \theta} \end{bmatrix} = \begin{bmatrix} \sin \varphi \cos \theta & \rho \cos \varphi \cos \theta & -\rho \sin \varphi \sin \theta \\ \sin \varphi \sin \theta & \rho \cos \varphi \sin \theta & \rho \sin \varphi \cos \theta \\ \cos \varphi & - \rho \sin \varphi & 0 \end{bmatrix}.</math> The [[determinant]] is {{math|''ρ''<sup>2</sup> sin ''φ''}}. Since {{math|''dV'' {{=}} ''dx'' ''dy'' ''dz''}} is the volume for a rectangular differential volume element (because the volume of a rectangular prism is the product of its sides), we can interpret {{math|''dV'' {{=}} ''ρ''<sup>2</sup> sin ''φ'' ''dρ'' ''dφ'' ''dθ''}} as the volume of the spherical [[differential volume element]]. Unlike rectangular differential volume element's volume, this differential volume element's volume is not a constant, and varies with coordinates ({{math|''ρ''}} and {{math|''φ''}}). It can be used to transform integrals between the two coordinate systems: <math display="block">\iiint_{\mathbf F(U)} f(x, y, z) \,dx \,dy \,dz = \iiint_U f(\rho \sin \varphi \cos \theta, \rho \sin \varphi\sin \theta, \rho \cos \varphi) \, \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta .</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)