Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jet bundle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Partial differential equations== Let ''(E, Ο, M)'' be a fiber bundle. An '''''r''-th order [[partial differential equation]]''' on Ο is a [[closed manifold|closed]] [[embedding|embedded]] submanifold ''S'' of the jet manifold ''J<sup>r</sup>(Ο)''. A solution is a local section Ο β Ξ<sub>''W''</sub>(Ο) satisfying <math>j^{r}_p\sigma \in S</math>, for all ''p'' in ''M''. Consider an example of a first order partial differential equation. ===Example=== Let Ο be the trivial bundle ('''R'''<sup>2</sup> Γ '''R''', pr<sub>1</sub>, '''R'''<sup>2</sup>) with global coordinates (''x''<sup>1</sup>, ''x''<sup>2</sup>, ''u''<sup>1</sup>). Then the map ''F'' : ''J''<sup>1</sup>(Ο) β '''R''' defined by :<math>F = u^1_1 u^1_2 - 2x^2 u^1</math> gives rise to the differential equation :<math>S = \left\{j^1_p\sigma \in J^1\pi\ :\ \left(u^1_1u^1_2 - 2x^2u^1\right)\left(j^1_p\sigma\right) = 0\right\}</math> which can be written :<math>\frac{\partial \sigma}{\partial x^1}\frac{\partial \sigma}{\partial x^2} - 2x^2\sigma = 0.</math> The particular :<math>\begin{cases} \sigma : \mathbf{R}^2 \to \mathbf{R}^2 \times \mathbf{R} \\ \sigma(p_1, p_2) = \left( p^1, p^2, p^1(p^2)^2 \right) \end{cases}</math> has first prolongation given by :<math>j^1\sigma\left(p_1, p_2\right) = \left( p^1, p^2, p^1\left(p^2\right)^2, \left(p^2\right)^2, 2p^1 p^2 \right) </math> and is a solution of this differential equation, because :<math>\begin{align} \left(u^1_1 u^1_2 - 2x^2 u^1 \right)\left(j^1_p\sigma\right) &= u^1_1\left(j^1_p\sigma\right)u^1_2\left(j^1_p\sigma\right) - 2x^2\left(j^1_p\sigma\right)u^1\left(j^1_p\sigma\right) \\ &= \left(p^2\right)^2 \cdot 2p^1 p^2 - 2 \cdot p^2 \cdot p^1\left(p^2\right)^2 \\ &= 2p^1\left(p^2\right)^3 - 2p^1 \left(p^2\right)^3 \\ &= 0 \end{align}</math> and so <math>j^1_p\sigma \in S</math> for ''every'' ''p'' β '''R'''<sup>2</sup>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)