Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Laboratory robotics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Combinatorial library synthesis=== Robotics have applications with [[combinatorial chemistry]] which has great impact on the [[pharmaceutical]] industry. The use of robotics has allowed for the use of much smaller reagent quantities and mass expansion of chemical libraries. The "parallel synthesis" method can be improved upon with automation. The main disadvantage to "parallel-synthesis" is the amount of time it takes to develop a library, automation is typically applied to make this process more efficient. The main types of automation are classified by the type of solid-phase substrates, the methods for adding and removing reagents, and design of reaction chambers. Polymer resins may be used as a substrate for solid-phase.<ref>Hardin, J.; Smietana, F., Automating combinatorial chemistry: A primer on benchtop robotic systems. Mol Divers 1996, 1 (4), 270-274.</ref> It is not a true combinatorial method in the sense that ''"split-mix"'' where a peptide compound is split into different groups and reacted with different compounds. This is then mixed back together split into more groups and each groups is reacted with a different compound. Instead the "parallel-synthesis" method does not mix, but reacts different groups of the same peptide with different compounds and allows for the identification of the individual compound on each solid support. A popular method implemented is the reaction block system due to its relative low cost and higher output of new compounds compared to other "parallel-synthesis" methods. Parallel-Synthesis was developed by ''Mario Geysen'' and his colleagues and is not a true type of combinatorial synthesis, but can be incorporated into a combinatorial synthesis.<ref>H. M. Geysen, R. H. Meloen, S. J. Barteling Proc. Natl. Acad. Sci. USA 1984, 81, 3998.</ref> This group synthesized 96 peptides on plastic pins coated with a solid support for the solid phase peptide synthesis. This method uses a rectangular block moved by a robot so that reagents can be pipetted by a robotic pipetting system. This block is separated into wells which the individual reactions take place. These compounds are later cleaved from the solid-phase of the well for further analysis. Another method is the closed reactor system which uses a completely closed off reaction vessel with a series of fixed connections to dispense. Though the produce fewer number of compounds than other methods, its main advantage is the control over the reagents and reaction conditions. Early closed reaction systems were developed for peptide synthesis which required variations in temperature and a diverse range of reagents. Some closed reactor system robots have a temperature range of 200Β°C and over 150 reagents.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)