Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear independence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Vectors in R<sup>2</sup> === '''Three vectors:''' Consider the set of vectors <math>\mathbf{v}_1 = (1, 1),</math> <math>\mathbf{v}_2 = (-3, 2),</math> and <math>\mathbf{v}_3 = (2, 4),</math> then the condition for linear dependence seeks a set of non-zero scalars, such that :<math>a_1 \begin{bmatrix} 1\\1\end{bmatrix} + a_2 \begin{bmatrix} -3\\2\end{bmatrix} + a_3 \begin{bmatrix} 2\\4\end{bmatrix} =\begin{bmatrix} 0\\0\end{bmatrix},</math> or :<math>\begin{bmatrix} 1 & -3 & 2 \\ 1 & 2 & 4 \end{bmatrix}\begin{bmatrix} a_1\\ a_2 \\ a_3 \end{bmatrix}= \begin{bmatrix} 0\\0\end{bmatrix}.</math> [[Row reduction|Row reduce]] this matrix equation by subtracting the first row from the second to obtain, :<math>\begin{bmatrix} 1 & -3 & 2 \\ 0 & 5 & 2 \end{bmatrix}\begin{bmatrix} a_1\\ a_2 \\ a_3 \end{bmatrix}= \begin{bmatrix} 0\\0\end{bmatrix}.</math> Continue the row reduction by (i) dividing the second row by 5, and then (ii) multiplying by 3 and adding to the first row, that is :<math>\begin{bmatrix} 1 & 0 & 16/5 \\ 0 & 1 & 2/5 \end{bmatrix}\begin{bmatrix} a_1\\ a_2 \\ a_3 \end{bmatrix}= \begin{bmatrix} 0\\0\end{bmatrix}.</math> Rearranging this equation allows us to obtain :<math>\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} a_1\\ a_2 \end{bmatrix}= \begin{bmatrix} a_1\\ a_2 \end{bmatrix}=-a_3\begin{bmatrix} 16/5\\2/5\end{bmatrix}.</math> which shows that non-zero ''a''<sub>''i''</sub> exist such that <math>\mathbf{v}_3 = (2, 4)</math> can be defined in terms of <math>\mathbf{v}_1 = (1, 1)</math> and <math>\mathbf{v}_2 = (-3, 2).</math> Thus, the three vectors are linearly dependent. '''Two vectors:''' Now consider the linear dependence of the two vectors <math>\mathbf{v}_1 = (1, 1)</math> and <math>\mathbf{v}_2 = (-3, 2),</math> and check, :<math>a_1 \begin{bmatrix} 1\\1\end{bmatrix} + a_2 \begin{bmatrix} -3\\2\end{bmatrix} =\begin{bmatrix} 0\\0\end{bmatrix},</math> or :<math>\begin{bmatrix} 1 & -3 \\ 1 & 2 \end{bmatrix}\begin{bmatrix} a_1\\ a_2 \end{bmatrix}= \begin{bmatrix} 0\\0\end{bmatrix}.</math> The same row reduction presented above yields, :<math>\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} a_1\\ a_2 \end{bmatrix}= \begin{bmatrix} 0\\0\end{bmatrix}.</math> This shows that <math>a_i = 0,</math> which means that the vectors <math>\mathbf{v}_1 = (1, 1)</math> and <math>\mathbf{v}_2 = (-3, 2)</math> are linearly independent.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)