Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Local ring
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== General case=== The [[Jacobson radical]] ''m'' of a local ring ''R'' (which is equal to the unique maximal left ideal and also to the unique maximal right ideal) consists precisely of the non-units of the ring; furthermore, it is the unique maximal two-sided ideal of ''R''. However, in the non-commutative case, having a unique maximal two-sided ideal is not equivalent to being local.<ref>The 2 by 2 matrices over a field, for example, has unique maximal ideal {0}, but it has multiple maximal right and left ideals.</ref> For an element ''x'' of the local ring ''R'', the following are equivalent: * ''x'' has a left inverse * ''x'' has a right inverse * ''x'' is invertible * ''x'' is not in ''m''. If {{nowrap|(''R'', ''m'')}} is local, then the [[factor ring]] ''R''/''m'' is a [[skew field]]. If {{nowrap|''J'' β ''R''}} is any two-sided ideal in ''R'', then the factor ring ''R''/''J'' is again local, with maximal ideal ''m''/''J''. A [[Kaplansky's theorem on projective modules|deep theorem]] by [[Irving Kaplansky]] says that any [[projective module]] over a local ring is [[free module|free]], though the case where the module is finitely-generated is a simple corollary to [[Nakayama's lemma]]. This has an interesting consequence in terms of [[Morita equivalence]]. Namely, if ''P'' is a [[finitely generated module|finitely generated]] projective ''R'' module, then ''P'' is isomorphic to the free module ''R''<sup>''n''</sup>, and hence the ring of endomorphisms <math>\mathrm{End}_R(P)</math> is isomorphic to the full ring of matrices <math>\mathrm{M}_n(R)</math>. Since every ring Morita equivalent to the local ring ''R'' is of the form <math>\mathrm{End}_R(P)</math> for such a ''P'', the conclusion is that the only rings Morita equivalent to a local ring ''R'' are (isomorphic to) the matrix rings over ''R''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)