Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Loss function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Bayes Risk ==== In a Bayesian approach, the expectation is calculated using the [[prior distribution]] {{pi}}<sup>*</sup> of the parameter ''θ'': :<math>\rho(\pi^*,a) = \int_\Theta \int _{\bold X} L(\theta, a(\bold x)) \, \mathrm{d} P(\bold x \vert \theta) \,\mathrm{d} \pi^* (\theta)= \int_{\bold X} \int_\Theta L(\theta,a(\bold x))\,\mathrm{d} \pi^*(\theta\vert \bold x)\,\mathrm{d}M(\bold x)</math> where m(x) is known as the ''predictive likelihood'' wherein θ has been "integrated out," {{pi}}<sup>*</sup> (θ | x) is the posterior distribution, and the order of integration has been changed. One then should choose the action ''a<sup>*</sup>'' which minimises this expected loss, which is referred to as ''Bayes Risk''. In the latter equation, the integrand inside dx is known as the ''Posterior Risk'', and minimising it with respect to decision ''a'' also minimizes the overall Bayes Risk. This optimal decision, ''a<sup>*</sup>'' is known as the ''Bayes (decision) Rule'' - it minimises the average loss over all possible states of nature θ, over all possible (probability-weighted) data outcomes. One advantage of the Bayesian approach is to that one need only choose the optimal action under the actual observed data to obtain a uniformly optimal one, whereas choosing the actual frequentist optimal decision rule as a function of all possible observations, is a much more difficult problem. Of equal importance though, the Bayes Rule reflects consideration of loss outcomes under different states of nature, θ.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)