Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Low-discrepancy sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Lower bounds== Let <math>s=1</math>. Then :<math> D_N^*(x_1,\ldots,x_N)\geq\frac{1}{2N} </math> for any finite point set <math>\{x_1, \dots, x_N }\</math>. Let <math>s=2</math>. [[Wolfgang M. Schmidt|W. M. Schmidt]] proved that for any finite point set <math>\{x_1, \dots, x_N }\</math>, :<math> D_N^*(x_1,\ldots,x_N)\geq C\frac{\log N}{N} </math> where :<math> C=\max_{a\geq3}\frac{1}{16}\frac{a-2}{a\log a}=0.023335\dots. </math> For arbitrary dimensions<math>s > 1</math>, [[Klaus Roth|K. F. Roth]] proved that :<math> D_N^*(x_1,\ldots,x_N)\geq\frac{1}{2^{4s}}\frac{1}{((s-1)\log2)^\frac{s-1}{2}}\frac{\log^{\frac{s-1}{2}}N}{N} </math> for any finite point set <math>\{x_1, \dots, x_N }\</math>. Jozef Beck <ref>{{cite journal|title=A two-dimensional van Aardenne-Ehrenfest theorem in irregularities of distribution|journal= Compositio Mathematica|volume= 72 |issue=3|year=1989|pages= 269β339|s2cid=125940424|last=Beck|first= JΓ³zsef|url=https://eudml.org/doc/89992|mr= 1032337 | zbl= 0691.10041}}</ref> established a double log improvement of this result in three dimensions. This was improved by D. Bilyk and [[Michael Lacey (mathematician)| M. T. Lacey]] to a power of a single logarithm. The best known bound for ''s'' > 2 is due D. Bilyk and [[Michael Lacey (mathematician)| M. T. Lacey]] and A. Vagharshakyan.<ref>{{Cite journal|doi=10.1016/j.jfa.2007.09.010|title=On the Small Ball Inequality in all dimensions |year=2008 |last1=Bilyk |first1=Dmitriy |last2=Lacey |first2=Michael T. |last3=Vagharshakyan |first3=Armen |journal=Journal of Functional Analysis |volume=254 |issue=9 |pages=2470β2502 |s2cid=14234006 |doi-access=free |arxiv=0705.4619 }}</ref> There exists a <math>t>0</math> depending on ''s'' so that :<math> D_N^*(x_1,\ldots,x_N)\geq t \frac{\log^{\frac{s-1}{2}+t}N}{N} </math> for any finite point set <math>\{x_1, \dots, x_N }\</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)