Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Magnetic reconnection
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Stochastic reconnection=== In stochastic reconnection,<ref>{{cite journal|author1-link=Alexandre Lazarian|last1=Lazarian|first1=Alex|last2=Vishniac|first2=Ethan|title=Reconnection in a Weakly Stochastic Field|journal=The Astrophysical Journal|date=1999|volume=517|issue=2|pages=700β718|doi=10.1086/307233|arxiv = astro-ph/9811037 |bibcode = 1999ApJ...517..700L |s2cid=119349364}}</ref> magnetic field has a small scale random component arising because of turbulence.<ref>{{cite journal|last1=Jafari|first1=Amir|last2=Vishniac|first2=Ethan|title=Topology and stochasticity of turbulent magnetic fields |journal=Physical Review E|date=2019|volume=100|issue=1|pages=013201|doi=10.1103/PhysRevE.100.013201|pmid=31499931|bibcode=2019PhRvE.100a3201J|s2cid=199120046}}</ref> For the turbulent flow in the reconnection region, a model for magnetohydrodynamic turbulence should be used such as the model developed by Goldreich and Sridhar in 1995.<ref>{{cite journal|last1=Goldreich|first1=P.|last2=Sridhar|first2=S.|title=Toward a theory of interstellar turbulence. 2: Strong Alfvenic turbulence|journal=The Astrophysical Journal|date=1995|volume=438|page=763|doi=10.1086/175121|bibcode = 1995ApJ...438..763G |url=https://authors.library.caltech.edu/38003/}}</ref> This stochastic model is independent of small scale physics such as resistive effects and depends only on turbulent effects.<ref>{{cite journal|last1=Jafari|first1=Amir|last2=Vishniac|first2=Ethan|last3=Kowal|first3=Grzegorz|last4=Lazarian|first4=Alex|title=Stochastic Reconnection for Large Magnetic Prandtl Numbers|journal=The Astrophysical Journal|date=2018|volume=860|issue=2|pages=52|doi=10.3847/1538-4357/aac517|bibcode=2018ApJ...860...52J|s2cid=126072383|doi-access=free}}</ref> Roughly speaking, in stochastic model, turbulence brings initially distant magnetic field lines to small separations where they can reconnect locally (Sweet-Parker type reconnection) and separate again due to turbulent super-linear diffusion (Richardson diffusion <ref>{{cite journal|last1=Jafari|first1=Amir|last2=Vishniac|first2=Ethan|title=Magnetic stochasticity and diffusion|journal=Physical Review E|date=2019|volume=100|issue=4|pages=043205|doi=10.1103/PhysRevE.100.043205|pmid=31770890|arxiv=1908.06474|bibcode=2019PhRvE.100d3205J|s2cid=201070540}}</ref>). For a current sheet of the length <math>L </math>, the upper limit for reconnection velocity is given by <math display="block">v = v_\text{turb} \; \operatorname{min}\left[\left( {L \over l} \right)^\frac{1}{2}, \left( {l \over L} \right)^\frac{1}{2} \right],</math> where <math>v_\text{turb} = v_l^2/v_A</math>. Here <math>l</math>, and <math>v_l</math> are turbulence injection length scale and velocity respectively and <math>v_A </math> is the AlfvΓ©n velocity. This model has been successfully tested by numerical simulations.<ref>{{cite journal|last1=Kowal|first1=G.|title=Numerical Tests of Fast Reconnection in Weakly Stochastic Magnetic Fields|last2=Lazarian|first2=A.|last3=Vishniac|first3=E.|last4=Otmianowska-Mazur|first4=K.|journal=The Astrophysical Journal|year=2009|volume=700|issue=1|pages=63β85|doi=10.1088/0004-637X/700/1/63|arxiv = 0903.2052 |bibcode = 2009ApJ...700...63K |s2cid=4671422}}</ref><ref>{{cite journal| last1=Kowal|first1=G| last2=Lazarian|first2=A.| last3=Vishniac|first3=E.| last4=Otmianowska-Mazur|first4=K.| title=Reconnection studies under different types of turbulence driving| journal=Nonlinear Processes in Geophysics|date=2012|volume=19|issue=2|pages=297β314|doi=10.5194/npg-19-297-2012| arxiv = 1203.2971 |bibcode = 2012NPGeo..19..297K |s2cid=53390559|doi-access=free}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)