Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Main sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Structure == {{Main|Stellar structure}} [[File:Solar internal structure.svg|right|upright=1.0|thumb|This diagram shows a cross-section of a Sun-like star, showing the internal structure.]] Because there is a temperature difference between the core and the surface, or [[photosphere]], energy is transported outward. The two modes for transporting this energy are [[radiation]] and [[convection]]. A [[radiation zone]], where energy is transported by radiation, is stable against convection and there is very little mixing of the plasma. By contrast, in a [[convection zone]] the energy is transported by bulk movement of plasma, with hotter material rising and cooler material descending. Convection is a more efficient mode for carrying energy than radiation, but it will only occur under conditions that create a steep temperature gradient.<ref name=brainerd/><ref name=aller91/> In massive stars (above {{solar mass|10}})<ref name=aaa102_1/> the rate of energy generation by the CNO cycle is very sensitive to temperature, so the fusion is highly concentrated at the core. Consequently, there is a high temperature gradient in the core region, which results in a convection zone for more efficient energy transport.<ref name=hannu/> This mixing of material around the core removes the helium ash from the hydrogen-burning region, allowing more of the hydrogen in the star to be consumed during the main-sequence lifetime. The outer regions of a massive star transport energy by radiation, with little or no convection.<ref name=brainerd/> Intermediate-mass stars such as [[Sirius]] may transport energy primarily by radiation, with a small core convection region.<ref name=lockner06/> Medium-sized, low-mass stars like the Sun have a core region that is stable against convection, with a convection zone near the surface that mixes the outer layers. This results in a steady buildup of a helium-rich core, surrounded by a hydrogen-rich outer region. By contrast, cool, very low-mass stars (below {{solar mass|0.4}}) are convective throughout.<ref name=science295_5552/> Thus the helium produced at the core is distributed across the star, producing a relatively uniform atmosphere and a proportionately longer main-sequence lifespan.<ref name=brainerd/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)