Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Metric tensor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Metric in coordinates=== A system of {{mvar|n}} real-valued functions {{math|(''x''<sup>1</sup>, ..., ''x''<sup>''n''</sup>)}}, giving a local [[coordinates|coordinate system]] on an [[open set]] {{mvar|U}} in {{mvar|M}}, determines a basis of vector fields on {{mvar|U}} :<math>\mathbf{f} = \left(X_1 = \frac{\partial}{\partial x^1}, \dots, X_n = \frac{\partial}{\partial x^n}\right) \,.</math> The metric {{mvar|g}} has components relative to this frame given by :<math>g_{ij}\left[\mathbf{f}\right] = g\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right) \,.</math> Relative to a new system of local coordinates, say :<math>y^i = y^i(x^1, x^2, \dots, x^n),\quad i=1,2,\dots,n</math> the metric tensor will determine a different matrix of coefficients, :<math>g_{ij}\left[\mathbf{f}'\right] = g\left(\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j}\right).</math> This new system of functions is related to the original {{math|''g''<sub>''ij''</sub>('''f''')}} by means of the [[chain rule]] :<math>\frac{\partial}{\partial y^i} = \sum_{k=1}^n \frac{\partial x^k}{\partial y^i}\frac{\partial}{\partial x^k}</math> so that :<math>g_{ij}\left[\mathbf{f}'\right] = \sum_{k,l=1}^n \frac{\partial x^k}{\partial y^i} g_{kl}\left[\mathbf{f}\right]\frac{\partial x^l}{\partial y^j}.</math> Or, in terms of the matrices {{math|''G''['''f'''] {{=}} (''g''<sub>''ij''</sub>['''f'''])}} and {{math|''G''['''f'''β²] {{=}} (''g''<sub>''ij''</sub>['''f'''β²])}}, :<math>G\left[\mathbf{f}'\right] = \left((Dy)^{-1}\right)^\mathsf{T} G\left[\mathbf{f}\right] (Dy)^{-1}</math> where {{mvar|Dy}} denotes the [[Jacobian matrix]] of the coordinate change.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)