Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Modular arithmetic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Integers modulo ''m'' == In the context of this paragraph, the modulus {{math|''m''}} is almost always taken as positive. The set of all [[#Congruence classes|congruence classes]] modulo {{math|''m''}} is a [[ring (mathematics)|ring]] called the '''ring of integers modulo {{math|''m''}}''', and is denoted <math display=inline>\mathbb{Z}/m\mathbb{Z}</math>, <math>\mathbb{Z}/m</math>, or <math>\mathbb{Z}_m</math>.<ref>{{Cite web|date=2013-11-16|title=2.3: Integers Modulo n|url=https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Book%3A_Introduction_to_Algebraic_Structures_(Denton)/02%3A_Groups_I/2.03%3A_Integers_Modulo_n|access-date=2020-08-12|website=Mathematics LibreTexts|language=en|archive-date=2021-04-19|archive-url=https://web.archive.org/web/20210419035455/https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Book%3A_Introduction_to_Algebraic_Structures_(Denton)/02%3A_Groups_I/2.03%3A_Integers_Modulo_n|url-status=live}}</ref> The ring <math>\mathbb{Z}/m\mathbb{Z}</math> is fundamental to various branches of mathematics (see ''{{section link|#Applications}}'' below). (In some parts of [[number theory]] the notation <math>\mathbb{Z}_m</math> is avoided because it can be confused with the set of [[P-adic integer|{{math|''m''}}-adic integers]].) For {{math|''m'' > 0}} one has : <math>\mathbb{Z}/m\mathbb{Z} = \left\{ \overline{a}_m \mid a \in \mathbb{Z}\right\} = \left\{ \overline{0}_m, \overline{1}_m, \overline{2}_m,\ldots, \overline{m{-}1}_m \right\}.</math> When {{math|1=''m'' = 1}}, <math>\mathbb{Z}/m\mathbb{Z}</math> is the [[zero ring]]; when {{math|1=''m'' = 0}}, <math>\mathbb{Z}/m\mathbb{Z}</math> is not an [[empty set]]; rather, it is [[isomorphism|isomorphic]] to <math>\mathbb{Z}</math>, since {{math|1={{overline|''a''}}<sub>0</sub> = {{mset|''a''}}}}. Addition, subtraction, and multiplication are defined on <math>\mathbb{Z}/m\mathbb{Z}</math> by the following rules: * <math>\overline{a}_m + \overline{b}_m = \overline{(a + b)}_m</math> * <math>\overline{a}_m - \overline{b}_m = \overline{(a - b)}_m</math> * <math>\overline{a}_m \overline{b}_m = \overline{(a b)}_m.</math> The properties given before imply that, with these operations, <math>\mathbb{Z}/m\mathbb{Z}</math> is a [[commutative ring]]. For example, in the ring <math>\mathbb{Z}/24\mathbb{Z}</math>, one has : <math>\overline{12}_{24} + \overline{21}_{24} = \overline{33}_{24}= \overline{9}_{24}</math> as in the arithmetic for the 24-hour clock. The notation <math>\mathbb{Z}/m\mathbb{Z}</math> is used because this ring is the [[quotient ring]] of <math>\mathbb{Z}</math> by the [[ideal (ring theory)|ideal]] <math>m\mathbb{Z}</math>, the set formed by all multiples of {{math|''m''}}, i.e., all numbers {{math|''k m''}} with <math>k\in\mathbb{Z}.</math> Under addition, <math>\mathbb Z/m\Z</math> is a [[cyclic group]]. All finite cyclic groups are isomorphic with <math>\mathbb Z/m\mathbb Z</math> for some {{mvar|m}}.<ref>Sengadir T., {{Google books|id=nglisrt9IewC|page=293|text=Zn is generated by 1|title=Discrete Mathematics and Combinatorics}}</ref> The ring of integers modulo {{math|''m''}} is a [[field (mathematics)|field]], i.e., every nonzero element has a [[Modular multiplicative inverse|multiplicative inverse]], if and only if {{math|''m''}} is [[Prime number|prime]]. If {{math|1=''m'' = ''p''{{i sup|''k''}}}} is a [[prime power]] with {{math|''k'' > 1}}, there exists a unique (up to isomorphism) finite field <math>\mathrm{GF}(m) =\mathbb F_m</math> with {{math|''m''}} elements, which is ''not'' isomorphic to <math>\mathbb Z/m\mathbb Z</math>, which fails to be a field because it has [[zero-divisor]]s. If {{math|''m'' > 1}}, <math>(\mathbb Z/m\mathbb Z)^\times</math> denotes the [[multiplicative group of integers modulo n|multiplicative group of the integers modulo {{math|''m''}}]] that are invertible. It consists of the congruence classes {{math|{{overline|''a''}}{{sub|''m''}}}}, where {{math|''a''}} [[coprime integers|is coprime]] to {{math|''m''}}; these are precisely the classes possessing a multiplicative inverse. They form an [[abelian group]] under multiplication; its order is {{math|''Ο''(''m'')}}, where {{mvar|Ο}} is [[Euler's totient function]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)