Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Module (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Generalizations === A ring ''R'' corresponds to a [[preadditive category]] '''R''' with a single [[object (category theory)|object]]. With this understanding, a left ''R''-module is just a covariant [[additive functor]] from '''R''' to the [[category of abelian groups|category '''Ab''' of abelian groups]], and right ''R''-modules are contravariant additive functors. This suggests that, if '''C''' is any preadditive category, a covariant additive functor from '''C''' to '''Ab''' should be considered a generalized left module over '''C'''. These functors form a [[functor category]] '''C'''-'''Mod''', which is the natural generalization of the module category ''R''-'''Mod'''. Modules over ''commutative'' rings can be generalized in a different direction: take a [[ringed space]] (''X'', O<sub>''X''</sub>) and consider the [[sheaf (mathematics)|sheaves]] of O<sub>''X''</sub>-modules (see [[sheaf of modules]]). These form a category O<sub>''X''</sub>-'''Mod''', and play an important role in modern [[algebraic geometry]]. If ''X'' has only a single point, then this is a module category in the old sense over the commutative ring O<sub>''X''</sub>(''X''). One can also consider modules over a [[semiring]]. Modules over rings are abelian groups, but modules over semirings are only [[commutative]] [[monoid]]s. Most applications of modules are still possible. In particular, for any [[semiring]] ''S'', the matrices over ''S'' form a semiring over which the tuples of elements from ''S'' are a module (in this generalized sense only). This allows a further generalization of the concept of [[vector space]] incorporating the semirings from theoretical computer science. Over [[near-rings]], one can consider near-ring modules, a nonabelian generalization of modules.{{Citation needed|date=May 2015}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)