Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Particle swarm optimization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Alleviate premature convergence=== Another research trend is to try to alleviate premature convergence (that is, optimization stagnation), e.g. by reversing or perturbing the movement of the PSO particles,<ref name=evers09thesis/><ref name=lovbjerg02extending/><ref name=xinchao10perturbed/><ref name=xzy02dpso/> another approach to deal with premature convergence is the use of multiple swarms<ref>{{cite journal | last1 = Cheung | first1 = N. J. | last2 = Ding | first2 = X.-M. | last3 = Shen | first3 = H.-B. | year = 2013 | title = OptiFel: A Convergent Heterogeneous Particle Sarm Optimization Algorithm for Takagi-Sugeno Fuzzy Modeling | journal = IEEE Transactions on Fuzzy Systems | volume = 22| issue = 4| pages = 919β933 | doi = 10.1109/TFUZZ.2013.2278972 | s2cid = 27974467 }}</ref> ([[multi-swarm optimization]]). The multi-swarm approach can also be used to implement multi-objective optimization.<ref name=nobile2012 /> Finally, there are developments in adapting the behavioural parameters of PSO during optimization.<ref name=zhan09adaptive/><ref name=nobile2017/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)