Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Permian
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Climate== [[File:Selwyn Rock 2.JPG|thumb|right|[[Inman Valley, South Australia|Selwyn Rock, South Australia]], an exhumed [[Glacial striation|glacial pavement]] of Permian age]] The Permian was cool in comparison to most other geologic time periods, with modest pole to Equator temperature gradients. At the start of the Permian, the Earth was still in the [[Late Paleozoic icehouse]] (LPIA), which began in the latest [[Devonian]] and spanned the entire Carboniferous period, with its most intense phase occurring during the latter part of the [[Pennsylvanian (geology)|Pennsylvanian]] epoch.<ref name="RosaIsbell" /><ref name="Scotese-2021" /> A significant trend of increasing aridification can be observed over the course of the Cisuralian.<ref name="MujalEtAl2018">{{cite journal |last1=Mujal |first1=Eudald |last2=Fortuny |first2=Josep |last3=Marmi |first3=Josep |last4=Dinarès-Turell |first4=Jaume |last5=Bolet |first5=Arnau |last6=Oms |first6=Oriol |date=January 2018 |title=Aridification across the Carboniferous–Permian transition in central equatorial Pangea: The Catalan Pyrenean succession (NE Iberian Peninsula) |url=https://www.sciencedirect.com/science/article/abs/pii/S0037073817302476 |url-status=live |journal=Sedimentary Geology |volume=363 |pages=48–68 |bibcode=2018SedG..363...48M |doi=10.1016/j.sedgeo.2017.11.005 |s2cid=133713470 |archive-url=https://web.archive.org/web/20221030224815/https://www.sciencedirect.com/science/article/abs/pii/S0037073817302476 |archive-date=30 October 2022 |access-date=30 October 2022}}</ref> Early Permian aridification was most notable in Pangaean localities at near-equatorial latitudes.<ref>{{cite journal |last1=Tabor |first1=Neil J. |last2=Poulsen |first2=Christopher J. |date=24 October 2008 |title=Palaeoclimate across the Late Pennsylvanian–Early Permian tropical palaeolatitudes: A review of climate indicators, their distribution, and relation to palaeophysiographic climate factors |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018208003064 |url-status=live |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=268 |issue=3–4 |pages=293–310 |bibcode=2008PPP...268..293T |doi=10.1016/j.palaeo.2008.03.052 |archive-url=https://web.archive.org/web/20230129190019/https://www.sciencedirect.com/science/article/abs/pii/S0031018208003064 |archive-date=29 January 2023 |access-date=29 January 2023|url-access=subscription }}</ref> Sea levels also rose notably in the Early Permian as the LPIA slowly waned.<ref>{{Cite journal |last1=Ma |first1=Rui |last2=Yang |first2=Jianghai |last3=Wang |first3=Yuan |last4=Yan |first4=Jiaxin |last5=Liu |first5=Jia |date=1 February 2023 |title=Estimating the magnitude of early Permian relative sea-level changes in southern North China |url=https://www.sciencedirect.com/science/article/pii/S0921818123000097 |journal=[[Global and Planetary Change]] |volume=221 |pages=104036 |doi=10.1016/j.gloplacha.2023.104036 |bibcode=2023GPC...22104036M |s2cid=255731847 |issn=0921-8181 |access-date=9 December 2023|url-access=subscription }}</ref><ref>{{Cite journal |last1=Yang |first1=Wenli |last2=Chen |first2=Jitao |last3=Gao |first3=Biao |last4=Zhong |first4=Yutian |last5=Huang |first5=Xing |last6=Wang |first6=Yue |last7=Qi |first7=Yuping |last8=Shen |first8=Kui-Shu |last9=Mii |first9=Horng-Sheng |last10=Wang |first10=Xiang-dong |last11=Shen |first11=Shu-zhong |date=1 February 2023 |title=Sedimentary facies and carbon isotopes of the Upper Carboniferous to Lower Permian in South China: Implications for icehouse to greenhouse transition |url=https://www.sciencedirect.com/science/article/pii/S0921818123000243 |journal=[[Global and Planetary Change]] |volume=221 |pages=104051 |doi=10.1016/j.gloplacha.2023.104051 |bibcode=2023GPC...22104051Y |s2cid=256381624 |issn=0921-8181 |access-date=9 December 2023|url-access=subscription }}</ref> At the Carboniferous-Permian boundary, a warming event occurred.<ref>{{Cite journal |last=Tabor |first=Neil J. |date=15 January 2007 |title=Permo-Pennsylvanian palaeotemperatures from Fe-Oxide and phyllosilicate δ18O values |url=https://www.sciencedirect.com/science/article/pii/S0012821X06007461 |journal=[[Earth and Planetary Science Letters]] |volume=253 |issue=1 |pages=159–171 |doi=10.1016/j.epsl.2006.10.024 |issn=0012-821X |access-date=4 November 2023|url-access=subscription }}</ref> In addition to becoming warmer, the climate became notably more arid at the end of the Carboniferous and beginning of the Permian.<ref name="MichelEtAl2015">{{cite journal |last1=Michel |first1=Lauren A. |last2=Tabor |first2=Neil J. |last3=Montañez |first3=Isabel P. |last4=Schmitz |first4=Mark D. |last5=Davydov |first5=Vladimir |date=15 July 2015 |title=Chronostratigraphy and Paleoclimatology of the Lodève Basin, France: Evidence for a pan-tropical aridification event across the Carboniferous–Permian boundary |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=430 |pages=118–131 |bibcode=2015PPP...430..118M |doi=10.1016/j.palaeo.2015.03.020 |doi-access=free}}</ref><ref>{{cite journal |last1=Tabor |first1=Neil J. |last2=DiMichele |first2=William A. |last3=Montañez |first3=Isabel P. |last4=Chaney |first4=Dan S. |date=1 November 2013 |title=Late Paleozoic continental warming of a cold tropical basin and floristic change in western Pangea |url=https://www.sciencedirect.com/science/article/abs/pii/S0166516213001687 |url-status=live |journal=International Journal of Coal Geology |volume=119 |pages=177–186 |bibcode=2013IJCG..119..177T |doi=10.1016/j.coal.2013.07.009 |archive-url=https://web.archive.org/web/20230406045855/https://www.sciencedirect.com/science/article/abs/pii/S0166516213001687 |archive-date=6 April 2023 |access-date=5 April 2023|url-access=subscription }}</ref> Nonetheless, temperatures continued to cool during most of the Asselian and Sakmarian, during which the LPIA peaked.<ref name="Scotese-2021" /><ref name="RosaIsbell" /> By 287 million years ago, temperatures warmed and the South Pole ice cap retreated in what was known as the Artinskian Warming Event (AWE),<ref name="MarchettiEtAl">{{cite journal |last1=Marchetti |first1=Lorenzo |last2=Forte |first2=Giuseppa |last3=Kustatscher |first3=Evelyn |last4=DiMichele |first4=William A. |last5=Lucas |first5=Spencer G. |last6=Roghi |first6=Guido |last7=Juncal |first7=Manuel A. |last8=Hartkopf-Fröder |first8=Christoph |last9=Krainer |first9=Karl |last10=Morelli |first10=Corrado |last11=Ronchi |first11=Ausonio |date=March 2022 |title=The Artinskian Warming Event: an Euramerican change in climate and the terrestrial biota during the early Permian |url=https://www.sciencedirect.com/science/article/abs/pii/S001282522200006X |journal=[[Earth-Science Reviews]] |volume=226 |page=103922 |doi=10.1016/j.earscirev.2022.103922 |bibcode=2022ESRv..22603922M |s2cid=245892961 |access-date=30 October 2022 |archive-date=30 October 2022 |archive-url=https://web.archive.org/web/20221030224818/https://www.sciencedirect.com/science/article/abs/pii/S001282522200006X |url-status=live |url-access=subscription }}</ref> though glaciers remained present in the uplands of eastern Australia,<ref name="RosaIsbell">{{cite book |last1=Rosa |first1=Eduardo L. M. |last2=Isbell |first2=John L. |editor-last1=Alderton |editor-first1=David |editor-last2=Elias |editor-first2=Scott A. |date=2021 |chapter=Late Paleozoic Glaciation |chapter-url=https://www.sciencedirect.com/science/article/pii/B9780081029084000631 |title=Encyclopedia of Geology |edition=2nd |publisher=Academic Press |pages=534–545 |doi=10.1016/B978-0-08-102908-4.00063-1 |isbn=978-0-08-102909-1 |s2cid=226643402 |access-date=2023-04-06 |archive-date=2023-01-28 |archive-url=https://web.archive.org/web/20230128221152/https://www.sciencedirect.com/science/article/pii/B9780081029084000631 |url-status=live }}</ref><ref name="CO2ForcedClimateVegetationInstability">{{cite journal |last1=Montañez |first1=Isabel P. |last2=Tabor |first2=Neil J. |last3=Niemeier |first3=Deb |last4=DiMichele |first4=William A. |last5=Frank |first5=Tracy D. |last6=Fielding |first6=Christopher R. |last7=Isbell |first7=John L. |last8=Birgenheier |first8=Lauren P. |last9=Rygel |first9=Michael C. |date=5 January 2007 |title=CO2-Forced Climate and Vegetation Instability During Late Paleozoic Deglaciation |url=https://www.science.org/doi/10.1126/science.1134207 |journal=[[Science (journal)|Science]] |volume=315 |issue=5808 |pages=87–91 |doi=10.1126/science.1134207 |pmid=17204648 |bibcode=2007Sci...315...87M |s2cid=5757323 |access-date=5 April 2023 |archive-date=6 April 2023 |archive-url=https://web.archive.org/web/20230406045855/https://www.science.org/doi/10.1126/science.1134207 |url-status=live |url-access=subscription }}</ref> and perhaps also the mountainous regions of far northern Siberia.<ref>{{cite journal |last1=Isbell |first1=John L. |last2=Biakov |first2=Alexander S. |last3=Vedernikov |first3=Igor L. |last4=Davydov |first4=Vladimir I. |last5=Gulbranson |first5=Erik L. |last6=Fedorchuk |first6=Nicholas D. |date=March 2016 |title=Permian diamictites in northeastern Asia: Their significance concerning the bipolarity of the late Paleozoic ice age |journal=[[Earth-Science Reviews]] |volume=154 |pages=279–300 |doi=10.1016/j.earscirev.2016.01.007 |bibcode=2016ESRv..154..279I |doi-access=free }}</ref> Southern Africa also retained glaciers during the late Cisuralian in upland environments.<ref>{{Cite journal |last1=Götz |first1=Annette E. |last2=Hancox |first2=P. John |last3=Lloyd |first3=Andrew |date=1 June 2020 |title=Southwestern Gondwana's Permian climate amelioration recorded in coal-bearing deposits of the Moatize sub-basin (Mozambique) |url=https://www.sciencedirect.com/science/article/pii/S1871174X1830074X |journal=[[Palaeoworld]] |series=Carboniferous-Permian biotic and climatic events |volume=29 |issue=2 |pages=426–438 |doi=10.1016/j.palwor.2018.08.004 |s2cid=135368509 |issn=1871-174X |access-date=9 December 2023}}</ref> The AWE also witnessed aridification of a particularly great magnitude.<ref name="MarchettiEtAl" /> In the late Kungurian, cooling resumed,<ref>{{cite journal |last1=Korte |first1=Christoph |last2=Jones |first2=Peter J. |last3=Brand |first3=Uwe |last4=Mertmann |first4=Dorothee |last5=Veizer |first5=Ján |date=4 November 2008 |title=Oxygen isotope values from high-latitudes: Clues for Permian sea-surface temperature gradients and Late Palaeozoic deglaciation |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018208003696 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=269 |issue=1–2 |pages=1–16 |doi=10.1016/j.palaeo.2008.06.012 |bibcode=2008PPP...269....1K |access-date=5 April 2023 |archive-date=6 April 2023 |archive-url=https://web.archive.org/web/20230406045855/https://www.sciencedirect.com/science/article/abs/pii/S0031018208003696 |url-status=live |url-access=subscription }}</ref> resulting in a cool glacial interval that lasted into the early Capitanian,<ref name="ShiAndNutman2022">{{cite journal |last1=Shi |first1=G. R. |last2=Nutman |first2=Allen P. |last3=Lee |first3=Sangmin |last4=Jones |first4=Brian G. |last5=Bann |first5=Glen R. |date=February 2022 |title=Reassessing the chronostratigraphy and tempo of climate change in the Lower-Middle Permian of the southern Sydney Basin, Australia: Integrating evidence from U–Pb zircon geochronology and biostratigraphy |url=https://www.sciencedirect.com/science/article/abs/pii/S0024493721006137 |journal=[[Lithos (journal)|Lithos]] |volume=410-411 |page=106570 |doi=10.1016/j.lithos.2021.106570 |bibcode=2022Litho.41006570S |s2cid=245312062 |access-date=2 October 2022 |archive-date=2 October 2022 |archive-url=https://web.archive.org/web/20221002165810/https://www.sciencedirect.com/science/article/abs/pii/S0024493721006137 |url-status=live |url-access=subscription }}</ref> though average temperatures were still much higher than during the beginning of the Cisuralian.<ref name="CO2ForcedClimateVegetationInstability" /> Another cool period began around the middle Capitanian.<ref name="ShiAndNutman2022" /> This cool period, lasting for 3–4 Myr, was known as the Kamura Event.<ref>{{Cite journal |last1=Isozaki |first1=Yukio |last2=Kawahata |first2=Hodaka |last3=Minoshima |first3=Kayo |date=1 January 2007 |title=The Capitanian (Permian) Kamura cooling event: The beginning of the Paleozoic–Mesozoic transition |url=https://www.sciencedirect.com/science/article/pii/S1871174X07000157 |journal=[[Palaeoworld]] |series=Contributions to Permian and Carboniferous Stratigraphy, Brachiopod Palaeontology and End-Permian Mass Extinctions, In Memory of Professor Yu-Gan Jin |volume=16 |issue=1 |pages=16–30 |doi=10.1016/j.palwor.2007.05.011 |issn=1871-174X |access-date=9 December 2023|url-access=subscription }}</ref> It was interrupted by the Emeishan Thermal Excursion in the late part of the Capitanian, around 260 million years ago, corresponding to the eruption of the [[Emeishan Traps]].<ref name="ChristopherScotese">{{Cite journal |last1=Scotese |first1=Christopher R. |last2=Song |first2=Haijun |last3=Mills |first3=Benjamin J.W. |last4=van der Meer |first4=Douwe G. |date=April 2021 |title=Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years |url=http://dx.doi.org/10.1016/j.earscirev.2021.103503 |journal=[[Earth-Science Reviews]] |volume=215 |pages=103503 |bibcode=2021ESRv..21503503S |doi=10.1016/j.earscirev.2021.103503 |issn=0012-8252 |archive-url=https://web.archive.org/web/20210108000000/http://dx.doi.org/10.1016/j.earscirev.2021.103503 |archive-date=8 January 2021 |s2cid=233579194 }} [https://eprints.whiterose.ac.uk/169823/ Alt URL] {{Webarchive|url=https://web.archive.org/web/20220128061345/https://eprints.whiterose.ac.uk/169823/ |date=2022-01-28 }}</ref> This interval of rapid [[climate change]] was responsible for the Capitanian mass extinction event.<ref name="Day-2015" /> During the early Wuchiapingian, following the emplacement of the Emeishan Traps, global temperatures declined as carbon dioxide was weathered out of the atmosphere by the large igneous province's emplaced basalts.<ref>{{cite journal |last1=Yang |first1=Jianghai |last2=Cawood |first2=Peter A. |last3=Du |first3=Yuansheng |last4=Condon |first4=Daniel J. |last5=Yan |first5=Jiaxin |last6=Liu |first6=Jianzhong |last7=Huang |first7=Yan |last8=Yuan |first8=Dongxun |date=15 June 2018 |title=Early Wuchiapingian cooling linked to Emeishan basaltic weathering? |journal=[[Earth and Planetary Science Letters]] |volume=492 |pages=102–111 |doi=10.1016/j.epsl.2018.04.004 |bibcode=2018E&PSL.492..102Y |s2cid=133753596 |doi-access=free }}</ref> The late Wuchiapingian saw the finale of the Late Palaeozoic Ice Age, when the last Australian glaciers melted.<ref name="RosaIsbell" /> The end of the Permian is marked by a temperature excursion, much larger than the Emeishan Thermal Excursion, at the Permian-Triassic boundary, corresponding to the eruption of the [[Siberian Traps]], which released more than 5 teratonnes of CO<sub>2</sub>, more than doubling the atmospheric carbon dioxide concentration.<ref name="Scotese-2021">{{Cite journal|last1=Scotese|first1=Christopher R.|last2=Song|first2=Haijun|last3=Mills|first3=Benjamin J.W.|last4=van der Meer|first4=Douwe G.|date=April 2021|title=Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years|url=http://dx.doi.org/10.1016/j.earscirev.2021.103503|journal=[[Earth-Science Reviews]]|volume=215|pages=103503|bibcode=2021ESRv..21503503S|doi=10.1016/j.earscirev.2021.103503|issn=0012-8252|archive-url=https://web.archive.org/web/20210907023816/https://www.sciencedirect.com/science/article/abs/pii/S0012825221000027|archive-date=7 September 2021|s2cid=233579194}} [https://eprints.whiterose.ac.uk/169823/ Alt URL] {{Webarchive|url=https://web.archive.org/web/20220128061345/https://eprints.whiterose.ac.uk/169823/ |date=2022-01-28 }}</ref> A -2% [[Δ18O|''δ''<sup>18</sup>O]] excursion signifies the extreme magnitude of this climatic shift.<ref>{{Cite journal |last1=Chen |first1=Bo |last2=Joachimski |first2=Michael M. |last3=Shen |first3=Shu-zhong |last4=Lambert |first4=Lance L. |last5=Lai |first5=Xu-long |last6=Wang |first6=Xiang-dong |last7=Chen |first7=Jun |last8=Yuan |first8=Dong-xun |date=1 July 2013 |title=Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited |url=https://www.sciencedirect.com/science/article/pii/S1342937X12002481 |journal=[[Gondwana Research]] |volume=24 |issue=1 |pages=77–89 |doi=10.1016/j.gr.2012.07.007 |bibcode=2013GondR..24...77C |issn=1342-937X |access-date=9 December 2023|url-access=subscription }}</ref> This extremely rapid interval of greenhouse gas release caused the Permian-Triassic mass extinction,<ref>{{Cite journal |last1=Joachimski |first1=M. M. |last2=Lai |first2=X. |last3=Shen |first3=S. |last4=Jiang |first4=H. |last5=Luo |first5=G. |last6=Chen |first6=B. |last7=Chen |first7=J. |last8=Sun |first8=Y. |date=1 March 2012 |title=Climate warming in the latest Permian and the Permian-Triassic mass extinction |url=https://pubs.geoscienceworld.org/gsa/geology/article-abstract/40/3/195/130777/Climate-warming-in-the-latest-Permian-and-the?redirectedFrom=fulltext |journal=[[Geology (journal)|Geology]] |language=en |volume=40 |issue=3 |pages=195–198 |doi=10.1130/G32707.1 |bibcode=2012Geo....40..195J |issn=0091-7613 |access-date=4 November 2023|url-access=subscription }}</ref> as well as ushering in an extreme hothouse that persisted for several million years into the next geologic epoch, the Triassic.<ref>{{Cite journal |last1=Cao |first1=Cheng |last2=Bataille |first2=Clément P. |last3=Song |first3=Haijun |last4=Saltzman |first4=Matthew R. |last5=Tierney Cramer |first5=Kate |last6=Wu |first6=Huaichun |last7=Korte |first7=Christoph |last8=Zhang |first8=Zhaofeng |last9=Liu |first9=Xiao-Ming |date=3 October 2022 |title=Persistent late Permian to Early Triassic warmth linked to enhanced reverse weathering |url=https://www.nature.com/articles/s41561-022-01009-x |journal=[[Nature Geoscience]] |language=en |volume=15 |issue=10 |pages=832–838 |doi=10.1038/s41561-022-01009-x |bibcode=2022NatGe..15..832C |s2cid=252708876 |issn=1752-0894 |access-date=4 November 2023}}</ref> The Permian climate was also extremely seasonal and characterised by [[Pangaean megamonsoon|megamonsoons]],<ref>{{cite journal |last1=Shields |first1=Christine A. |last2=Kiehl |first2=Jeffrey T. |date=1 February 2018 |title=Monsoonal precipitation in the Paleo-Tethys warm pool during the latest Permian |url=https://www.sciencedirect.com/science/article/pii/S0031018217308258 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=491 |pages=123–136 |doi=10.1016/j.palaeo.2017.12.001 |bibcode=2018PPP...491..123S |access-date=29 January 2023 |archive-date=29 January 2023 |archive-url=https://web.archive.org/web/20230129190019/https://www.sciencedirect.com/science/article/pii/S0031018217308258 |url-status=live |url-access=subscription }}</ref> which produced high aridity and extreme seasonality in Pangaea's interiors.<ref>{{cite journal |last1=Ziegler |first1=Alfred |last2=Eshel |first2=Gidon |last3=Rees |first3=P. McAllister |last4=Rothfus |first4=Thomas |last5=Rowley |first5=David |last6=Sunderlin |first6=David |date=2 January 2007 |title=Tracing the tropics across land and sea: Permian to present |url=https://onlinelibrary.wiley.com/doi/10.1080/00241160310004657 |journal=[[Lethaia]] |volume=36 |issue=3 |pages=227–254 |doi=10.1080/00241160310004657 |bibcode=2003Letha..36..227Z |access-date=29 January 2023 |archive-date=29 January 2023 |archive-url=https://web.archive.org/web/20230129190026/https://onlinelibrary.wiley.com/doi/10.1080/00241160310004657 |url-status=live }}</ref> Precipitation along the western margins of the Palaeo-Tethys Ocean was very high.<ref>{{cite journal |last1=López-Gómez |first1=José |last2=Arche |first2=Alfredo |last3=Marzo |first3=Mariano |last4=Durand |first4=Marc |date=12 December 2005 |title=Stratigraphical and palaeogeographical significance of the continental sedimentary transition across the Permian–Triassic boundary in Spain |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018205003809 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=229 |issue=1–2 |pages=3–23 |doi=10.1016/j.palaeo.2004.11.028 |bibcode=2005PPP...229....3L |access-date=11 March 2023 |archive-date=11 March 2023 |archive-url=https://web.archive.org/web/20230311164107/https://www.sciencedirect.com/science/article/abs/pii/S0031018205003809 |url-status=live }}</ref> Evidence for the megamonsoon includes the presence of megamonsoonal rainforests in the Qiangtang Basin of Tibet,<ref>{{cite journal |last1=Fang |first1=Xiaomin |last2=Song |first2=Chunhui |last3=Yan |first3=Maodu |last4=Zan |first4=Jinbo |last5=Liu |first5=Chenglin |last6=Sha |first6=Jingeng |last7=Zhang |first7=Weilin |last8=Zeng |first8=Yongyao |last9=Wu |first9=Song |last10=Zhang |first10=Dawen |date=September 2016 |title=Mesozoic litho- and magneto-stratigraphic evidence from the central Tibetan Plateau for megamonsoon evolution and potential evaporites |url=https://www.sciencedirect.com/science/article/abs/pii/S1342937X16301101 |journal=[[Gondwana Research]] |volume=37 |pages=110–129 |doi=10.1016/j.gr.2016.05.012 |bibcode=2016GondR..37..110F |access-date=29 January 2023 |archive-date=29 January 2023 |archive-url=https://web.archive.org/web/20230129190017/https://www.sciencedirect.com/science/article/abs/pii/S1342937X16301101 |url-status=live |url-access=subscription }}</ref> enormous seasonal variation in sedimentation, bioturbation, and ichnofossil deposition recorded in sedimentary facies in the [[Sydney Basin]],<ref>{{cite journal |last1=Luo |first1=Mao |last2=Shi |first2=G. R. |last3=Li |first3=Sangmin |date=1 March 2020 |title=Stacked Parahaentzschelinia ichnofabrics from the Lower Permian of the southern Sydney Basin, southeastern Australia: Palaeoecologic and palaeoenvironmental significance |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018219305826 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=541 |page=109538 |doi=10.1016/j.palaeo.2019.109538 |bibcode=2020PPP...54109538L |s2cid=214119448 |access-date=29 January 2023 |archive-date=6 November 2022 |archive-url=https://web.archive.org/web/20221106035508/https://www.sciencedirect.com/science/article/abs/pii/S0031018219305826 |url-status=live |url-access=subscription }}</ref> and palaeoclimatic models of the Earth's climate based on the behaviour of modern weather patterns showing that such a megamonsoon would occur given the continental arrangement of the Permian.<ref>{{cite journal |last1=Kutzbach |first1=J. E. |last2=Gallimore |first2=R. G. |date=20 March 1989 |title=Pangaean climates: Megamonsoons of the megacontinent |url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JD094iD03p03341 |journal=[[Journal of Geophysical Research]] |volume=94 |issue=D3 |pages=3341–3357 |doi=10.1029/JD094iD03p03341 |bibcode=1989JGR....94.3341K |access-date=29 January 2023 |archive-date=29 January 2023 |archive-url=https://web.archive.org/web/20230129190027/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JD094iD03p03341 |url-status=live |url-access=subscription }}</ref> The aforementioned increasing equatorial aridity was likely driven by the development and intensification of this Pangaean megamonsoon.<ref>{{cite journal |last1=Kessler |first1=Jennifer L. P. |last2=Soreghan |first2=Gerilyn S. |last3=Wacker |first3=Herbert J. |date=1 September 2001 |title=Equatorial Aridity in Western Pangea: Lower Permian Loessite and Dolomitic Paleosols in Northeastern New Mexico, U.S.A. |url=https://pubs.geoscienceworld.org/sepm/jsedres/article-abstract/71/5/817/99222/Equatorial-Aridity-in-Western-Pangea-Lower-Permian |journal=[[Journal of Sedimentary Research]] |volume=15 |issue=5 |pages=817–832 |doi=10.1306/2DC4096B-0E47-11D7-8643000102C1865D |bibcode=2001JSedR..71..817K |access-date=29 January 2023 |archive-date=29 January 2023 |archive-url=https://web.archive.org/web/20230129190017/https://pubs.geoscienceworld.org/sepm/jsedres/article-abstract/71/5/817/99222/Equatorial-Aridity-in-Western-Pangea-Lower-Permian |url-status=live |url-access=subscription }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)