Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Plücker coordinates
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Quadratic relation === The image of {{math|α}} is not the complete set of points in {{tmath|\mathbb P^5}}; the Plücker coordinates of a line {{mvar|L}} satisfy the quadratic Plücker relation : <math> \begin{align} 0 & = p_{01}p^{01}+p_{02}p^{02}+p_{03}p^{03} \\ & = p_{01}p_{23}+p_{02}p_{31}+p_{03}p_{12}. \end{align} </math> For proof, write this homogeneous polynomial as determinants and use [[Laplace expansion]] (in reverse). : <math> \begin{align} 0 & = \begin{vmatrix}x_0&y_0\\x_1&y_1\end{vmatrix}\begin{vmatrix}x_2&y_2\\x_3&y_3\end{vmatrix}+ \begin{vmatrix}x_0&y_0\\x_2&y_2\end{vmatrix}\begin{vmatrix}x_3&y_3\\x_1&y_1\end{vmatrix}+ \begin{vmatrix}x_0&y_0\\x_3&y_3\end{vmatrix}\begin{vmatrix}x_1&y_1\\x_2&y_2\end{vmatrix} \\[5pt] & = (x_0 y_1-y_0 x_1)\begin{vmatrix}x_2&y_2\\x_3&y_3\end{vmatrix}- (x_0 y_2-y_0 x_2)\begin{vmatrix}x_1&y_1\\x_3&y_3\end{vmatrix}+ (x_0 y_3-y_0 x_3)\begin{vmatrix}x_1&y_1\\x_2&y_2\end{vmatrix} \\[5pt] & = x_0 \left(y_1\begin{vmatrix}x_2&y_2\\x_3&y_3\end{vmatrix}- y_2\begin{vmatrix}x_1&y_1\\x_3&y_3\end{vmatrix}+ y_3\begin{vmatrix}x_1&y_1\\x_2&y_2\end{vmatrix}\right) -y_0 \left(x_1\begin{vmatrix}x_2&y_2\\x_3&y_3\end{vmatrix}- x_2\begin{vmatrix}x_1&y_1\\x_3&y_3\end{vmatrix}+ x_3\begin{vmatrix}x_1&y_1\\x_2&y_2\end{vmatrix}\right) \\[5pt] & = x_0 \begin{vmatrix}x_1&y_1&y_1\\x_2&y_2&y_2\\x_3&y_3&y_3\end{vmatrix} -y_0 \begin{vmatrix}x_1&x_1&y_1\\x_2&x_2&y_2\\x_3&x_3&y_3\end{vmatrix} \end{align} </math> Since both 3×3 determinants have duplicate columns, the right hand side is identically zero. Another proof may be done like this: Since vector : <math> d = \left( p_{01}, p_{02}, p_{03} \right) </math> is perpendicular to vector : <math> m = \left( p_{23}, p_{31}, p_{12} \right) </math> (see above), the scalar product of {{mvar|d}} and {{mvar|m}} must be zero. q.e.d.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)