Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polygonal number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Combinations== Some numbers, such as 36 which is both square and triangular, fall into two polygonal sets. The problem of determining, given two such sets, all numbers that belong to both can be solved by reducing the problem to [[Pell's equation]]. The simplest example of this is the sequence of [[square triangular number]]s. The following table summarizes the set of {{mvar|s}}-gonal {{mvar|t}}-gonal numbers for small values of {{mvar|s}} and {{mvar|t}}. :{| class="wikitable" border="1" |- ! {{mvar|s}} ! {{mvar|t}} ! Sequence ! [[On-Line Encyclopedia of Integer Sequences|OEIS]] number |- |4 |3 |1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, 1882672131025, 63955431761796, 2172602007770041, 73804512832419600, 2507180834294496361, 85170343853180456676, 2893284510173841030625, 98286503002057414584576, 3338847817559778254844961, ... | {{OEIS link|id=A001110}} |- |5 |3 |1, 210, 40755, 7906276, 1533776805, 297544793910, 57722156241751, 11197800766105800, 2172315626468283465, β¦ | {{OEIS link|id=A014979}} |- |5 |4 |1, 9801, 94109401, 903638458801, 8676736387298001, 83314021887196947001, 799981229484128697805801, ... | {{OEIS link|id=A036353}} |- |6 |3 |All hexagonal numbers are also triangular. | {{OEIS link|id=A000384}} |- |6 |4 |1, 1225, 1413721, 1631432881, 1882672131025, 2172602007770041, 2507180834294496361, 2893284510173841030625, 3338847817559778254844961, 3853027488179473932250054441, ... | {{OEIS link|id=A046177}} |- |6 |5 |1, 40755, 1533776805, β¦ | {{OEIS link|id=A046180}} |- |7 |3 |1, 55, 121771, 5720653, 12625478965, 593128762435, 1309034909945503, 61496776341083161, 135723357520344181225, 6376108764003055554511, 14072069153115290487843091, β¦ | {{OEIS link|id=A046194}} |- |7 |4 |1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609, 350709705290025, 25635978392186449, 9976444135331412025, β¦ | {{OEIS link|id=A036354}} |- |7 |5 |1, 4347, 16701685, 64167869935, β¦ | {{OEIS link|id=A048900}} |- |7 |6 |1, 121771, 12625478965, β¦ | {{OEIS link|id=A048903}} |- |8 |3 |1, 21, 11781, 203841, β¦ | {{OEIS link|id=A046183}} |- |8 |4 |1, 225, 43681, 8473921, 1643897025, 318907548961, 61866420601441, 12001766689130625, 2328280871270739841, 451674487259834398561, 87622522247536602581025, 16998317641534841066320321, β¦ | {{OEIS link|id=A036428}} |- |8 |5 |1, 176, 1575425, 234631320, β¦ | {{OEIS link|id=A046189}} |- |8 |6 |1, 11781, 113123361, β¦ | {{OEIS link|id=A046192}} |- |8 |7 |1, 297045, 69010153345, β¦ | {{OEIS link|id=A048906}} |- |9 |3 |1, 325, 82621, 20985481, β¦ | {{OEIS link|id=A048909}} |- |9 |4 |1, 9, 1089, 8281, 978121, 7436529, 878351769, 6677994961, 788758910641, 5996832038649, 708304623404049, 5385148492712041, 636056763057925561, ... | {{OEIS link|id=A036411}} |- |9 |5 |1, 651, 180868051, β¦ | {{OEIS link|id=A048915}} |- |9 |6 |1, 325, 5330229625, β¦ | {{OEIS link|id=A048918}} |- |9 |7 |1, 26884, 542041975, β¦ | {{OEIS link|id=A048921}} |- |9 |8 |1, 631125, 286703855361, β¦ | {{OEIS link|id=A048924}} |- |} In some cases, such as {{math|''s'' {{=}} 10}} and {{math|''t'' {{=}} 4}}, there are no numbers in both sets other than 1. The problem of finding numbers that belong to three polygonal sets is more difficult. A computer search for pentagonal square triangular numbers has yielded only the trivial value of 1, though a proof that there are no other such numbers has yet to be found.<ref>{{MathWorld|title=Pentagonal Square Triangular Number | urlname=PentagonalSquareTriangularNumber}}</ref> The number [[1000_(number)#1200_to_1299|1225]] is hecatonicositetragonal ({{math|''s'' {{=}} 124}}), hexacontagonal ({{math|''s'' {{=}} 60}}), icosienneagonal ({{math|''s'' {{=}} 29}}), hexagonal, square, and triangular.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)