Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polynomial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Division === The division of one polynomial by another is not typically a polynomial. Instead, such ratios are a more general family of objects, called ''[[rational fraction]]s'', ''rational expressions'', or ''[[rational function]]s'', depending on context.<ref>{{cite book|last1 = Marecek | first1 = Lynn | last2 = Mathis | first2 = Andrea Honeycutt | title = Intermediate Algebra 2e | date = 6 May 2020 | publisher = [[OpenStax]] <!-- | location = Houston, Texas -->| url = https://openstax.org/details/books/intermediate-algebra-2e | at = Β§7.1}}</ref> This is analogous to the fact that the ratio of two [[integer]]s is a [[rational number]], not necessarily an integer.<ref>{{Cite book|last1=Haylock|first1=Derek|url=https://books.google.com/books?id=hgAr3maZeQUC&q=division+integers+not+closed&pg=PA49|title=Understanding Mathematics for Young Children: A Guide for Foundation Stage and Lower Primary Teachers|last2=Cockburn|first2=Anne D.|date=2008-10-14|publisher=SAGE|isbn=978-1-4462-0497-9|pages=49|language=en|quote=We find that the set of integers is not closed under this operation of division.}}</ref><ref name = openstax>{{harvnb|Marecek|Mathis|2020|loc=Β§5.4]}}</ref> For example, the fraction {{math|1/(''x''<sup>2</sup> + 1)}} is not a polynomial, and it cannot be written as a finite sum of powers of the variable {{mvar|x}}. For polynomials in one variable, there is a notion of [[Euclidean division of polynomials]], generalizing the [[Euclidean division]] of integers.{{efn|This paragraph assumes that the polynomials have coefficients in a [[field (mathematics)|field]].}} This notion of the division {{math|''a''(''x'')/''b''(''x'')}} results in two polynomials, a ''quotient'' {{math|''q''(''x'')}} and a ''remainder'' {{math|''r''(''x'')}}, such that {{math|''a'' {{=}} ''b'' ''q'' + ''r''}} and {{math|degree(''r'') < degree(''b'')}}. The quotient and remainder may be computed by any of several algorithms, including [[polynomial long division]] and [[synthetic division]].<ref>{{cite book |first1=Peter H. |last1=Selby |first2=Steve |last2=Slavin |title=Practical Algebra: A Self-Teaching Guide |date=1991 |publisher=Wiley |isbn=978-0-471-53012-1 |edition=2nd}}</ref> When the denominator {{math|''b''(''x'')}} is [[monic polynomial|monic]] and linear, that is, {{math|1=''b''(''x'') = ''x'' β ''c''}} for some constant {{mvar|c}}, then the [[polynomial remainder theorem]] asserts that the remainder of the division of {{math|''a''(''x'')}} by {{math|''b''(''x'')}} is the [[#evaluation|evaluation]] {{math|''a''(''c'')}}.<ref name = openstax/> In this case, the quotient may be computed by [[Ruffini's rule]], a special case of synthetic division.<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Ruffini's Rule|url=https://mathworld.wolfram.com/RuffinisRule.html|access-date=2020-07-25|website=mathworld.wolfram.com|language=en}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)