Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Presburger arithmetic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Bibliography== {{Refbegin}} *{{cite journal |last= Berman |first= L. |year= 1980 |title= The Complexity of Logical Theories |journal= [[Theoretical Computer Science (journal)|Theoretical Computer Science]] |volume= 11 |issue= 1 |pages= 71–77 |doi= 10.1016/0304-3975(80)90037-7 |doi-access= free }} *{{cite conference |last= Büchi |first= J. Richard |author-link= Julius Richard Büchi |year= 1962 |title= On a Decision Method in Restricted Second Order Arithmetic |conference= Proceedings of the International Congress for Logic |book-title= Logic, methodology and philosophy of science |location= Stanford |pages= 1–11 |publisher= [[Stanford University Press]] |editor1-last= Nagel |editor1-first= Ernest |editor1-link= Ernest Nagel |editor2-last= Suppes |editor2-first= Patrick |editor2-link= Patrick Suppes |editor3-last= Tarski |editor3-first= Alfred |editor3-link= Alfred Tarski }} *{{cite journal |last= Cobham |first= Alan |author-link= Alan Cobham (mathematician) |year= 1969 |title= On the base-dependence of sets of numbers recognizable by finite automata |journal= Math. Systems Theory |volume= 3 |issue= 2 |pages= 186–192 |doi=10.1007/BF01746527 |s2cid=19792434 }} *{{Cite journal |last= Cooper |first= D.C. |year= 1972 |title= Theorem Proving in Arithmetic without Multiplication |journal= Machine Intelligence |volume= 7 |editor1-last= Meltzer |editor1-first= B. |editor2-last= Michie |editor2-first= D. |publisher= [[Edinburgh University Press]] |pages= 91–99 |url= https://www21.in.tum.de/teaching/logik/SS16/Exercises/Cooper.pdf }} *{{cite journal |last1= Eisenbrand |first1= Friedrich |authorlink1=Friedrich Eisenbrand |last2= Shmonin |first2= Gennady |year= 2008 |title= Parametric Integer Programming in Fixed Dimension |journal= [[Mathematics of Operations Research]] |volume= 33 |issue= 4 |pages= 839–850 |arxiv= 0801.4336 |doi= 10.1287/moor.1080.0320 |s2cid= 15698556 }} *{{Cite book |last= Enderton |first= Herbert |year= 2001 |title= A mathematical introduction to logic |publisher= [[Academic Press]] |location= Boston, MA |edition= 2nd |isbn= 978-0-12-238452-3 }} *{{cite book |last1= Ferrante |first1= Jeanne |author-link1= Jeanne Ferrante |last2= Rackoff |first2= Charles W. |year= 1979 |title= The Computational Complexity of Logical Theories |series= Lecture Notes in Mathematics |volume= 718 |publisher= [[Springer-Verlag]] |doi= 10.1007/BFb0062837 |isbn= 978-3-540-09501-9 |mr= 0537764 }} *{{cite conference |last1= Fischer |first1= Michael J. |author-link1= Michael J. Fischer |last2= Rabin |first2= Michael O. |author-link2= Michael O. Rabin |year= 1974 |title= Super-Exponential Complexity of Presburger Arithmetic |url= http://www.lcs.mit.edu/publications/pubs/ps/MIT-LCS-TM-043.ps |series= SIAM-AMS Proceedings |editor-last= Karp |editor-first= Richard M. |book-title= Complexity of computation |publisher= [[American Mathematical Society]] |isbn= 978-0-8218-1327-0 |oclc= 1205569621 |volume= 7 |pages= 27–41 |access-date= 2006-06-11 |archive-url= https://web.archive.org/web/20060915010325/http://www.lcs.mit.edu/publications/pubs/ps/MIT-LCS-TM-043.ps |archive-date= 2006-09-15 |url-status= dead }} *{{cite journal |last1= Ginsburg |first1= Seymour |author-link1= Seymour Ginsburg |last2= Spanier |first2= Edwin Henry |author-link2= Edwin Spanier |year= 1966 |title= Semigroups, Presburger Formulas, and Languages |journal= [[Pacific Journal of Mathematics]] |volume= 16 |issue= 2 |pages= 285–296 |doi=10.2140/pjm.1966.16.285 |doi-access=free |url= https://projecteuclid.org/journals/pacific-journal-of-mathematics/volume-16/issue-2/Semigroups-Presburger-formulas-and-languages/pjm/1102994974.pdf }} *{{cite conference | last= Haase | first= Christoph | year= 2014 | title= Subclasses of Presburger Arithmetic and the Weak EXP Hierarchy | book-title= Proceedings CSL-[[Logic in Computer Science|LICS]] | publisher= ACM | pages= 47:1–47:10 | doi= 10.1145/2603088.2603092 | arxiv= 1401.5266 }} *{{Cite journal |last= Haase |first= Christoph |year= 2018 |title= A Survival Guide to Presburger Arithmetic |journal= ACM SIGLOG News |url= http://www.cs.ox.ac.uk/people/christoph.haase/home/publication/haa-18/haa-18.pdf |volume= 5 |issue= 3 |pages= 67–82 |doi= 10.1145/3242953.3242964 |s2cid= 51847374 }} *{{cite web |last= Hoang |first= Nhat Minh |title= Presburger Arithmetic |url= https://www21.in.tum.de/teaching/sar/SS20/9.pdf |at= [[Technical University of Munich|Technische Universität München]] |quote= In this paper a procedure for constructing an automaton that decides Presburger arithmetic is explained. |access-date= 22 March 2024 }} *{{cite book |last1= King |first1= Tim |last2= Barrett |first2= Clark W. |last3= Tinelli |first3= Cesare |title= 2014 Formal Methods in Computer-Aided Design (FMCAD) |year= 2014 |chapter= Leveraging linear and mixed integer programming for SMT |volume= 2014 |pages= 139–146 |doi= 10.1109/FMCAD.2014.6987606 |isbn= 978-0-9835-6784-4 |s2cid= 5542629 }} *{{cite journal |last1= Michaux |first1= Christian |last2= Villemaire |first2= Roger |title= Presburger Arithmetic and Recognizability of Sets of Natural Numbers by Automata: New Proofs of Cobham's and Semenov's Theorems |journal= [[Annals of Pure and Applied Logic]] |date= 1996 |volume= 77 |issue= 3 |pages= 251–277 |doi= 10.1016/0168-0072(95)00022-4 |doi-access= }} *{{Cite book |last= Monk |first= J. Donald |year= 2012 |title= Mathematical Logic (Graduate Texts in Mathematics (37)) |publisher= Springer |edition= Softcover reprint of the original 1st ed. 1976 |isbn= 9781468494549 }} *{{cite journal |last= Muchnik |first= Andrei A. |title= The definable criterion for definability in Presburger arithmetic and its applications |journal= Theor. Comput. Sci. |date= 2003 |volume= 290 |issue= 3 |pages= 1433–1444 |doi= 10.1016/S0304-3975(02)00047-6 |doi-access= free }} *{{cite journal |last1= Nelson |first1= Greg |last2= Oppen |first2= Derek C. |date= April 1978 |title= A simplifier based on efficient decision algorithms |journal= Proc. 5th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages |pages= 141–150 |doi= 10.1145/512760.512775 |s2cid= 6342372 }} *{{cite book |last1= Nguyen |first1= Danny |last2= Pak |first2= Igor |title= 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS) |chapter= Short Presburger Arithmetic is Hard |authorlink2=Igor Pak |year= 2017 |pages= 37–48 |chapter-url= http://www.math.ucla.edu/~pak/papers/hard_presburger3.pdf |access-date= 2022-09-04 |arxiv= 1708.08179 |doi= 10.1109/FOCS.2017.13 |isbn= 978-1-5386-3464-6 |s2cid= 3425421 }} *{{cite thesis |last= Nguyen Luu |first= Dahn |year= 2018 |title= The Computational Complexity of Presburger Arithmetic |publisher= UCLA Electronic Theses and Dissertations |location= Los Angeles |url= https://escholarship.org/uc/item/6j9051vs |access-date= 2022-09-08 }} *{{cite journal |last= Nipkow |first= T |year= 2010 |title= Linear Quantifier Elimination |url= https://www.proof.cit.tum.de/~nipkow/pubs/jar10.pdf |journal= [[Journal of Automated Reasoning]] |volume= 45 |issue= 2 |pages= 189–212 |doi= 10.1007/s10817-010-9183-0 |s2cid= 14279141 }} *{{cite journal |last= Oppen |first= Derek C. |year= 1978 |title= A 2<sup>2<sup>2<sup>''pn''</sup></sup></sup> Upper Bound on the Complexity of Presburger Arithmetic |journal= [[J. Comput. Syst. Sci.]] |volume= 16 |issue= 3 |pages= 323–332 |doi= 10.1016/0022-0000(78)90021-1 |doi-access= free }} *{{cite journal |last= Presburger |first= Mojżesz |author-link= Mojżesz Presburger |date= 1929 |title= Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt |journal= Comptes Rendus du I congrès de Mathématiciens des Pays Slaves, Warszawa |pages= 92–101 }}, see {{harvtxt|Stansifer|1984}} for an English translation *{{cite conference |last= Pugh |first= William |author-link= William Pugh (computer scientist) |title= Proceedings of the 1991 ACM/IEEE conference on Supercomputing - Supercomputing '91 |chapter= The Omega test: A fast and practical integer programming algorithm for dependence analysis |year= 1991 |pages= 4–13 |publisher = Association for Computing Machinery |publication-place= New York, NY, USA |doi= 10.1145/125826.125848 |isbn= 0897914597 |s2cid= 3174094 |citeseerx= 10.1.1.37.1995 }} *{{cite conference |last1= Reddy |first1= C.R. |last2= Loveland |first2= D.W. |title= Proceedings of the tenth annual ACM symposium on Theory of computing - STOC '78 |chapter= Presburger arithmetic with bounded quantifier alternation |year= 1978 |pages = 320–325 |doi= 10.1145/800133.804361 |s2cid= 13966721 }} *{{cite journal |first= A.L. |last= Semenov |year= 1977 |title= Presburgerness of predicates regular in two number systems |language= ru |journal= [[Sibirsk. Mat. Zh.]] |volume= 18 |issue= 2 |pages= 403–418 |doi= 10.1007/BF00967164 |bibcode= 1977SibMJ..18..289S }} *{{cite report |last= Stansifer |first= Ryan |date= Sep 1984 |title= Presburger's Article on Integer Arithmetic: Remarks and Translation |type= Technical Report |location= Ithaca/NY |publisher= Dept. of Computer Science, Cornell University |volume= TR84-639 |url= http://cs.fit.edu/~ryan/papers/presburger.pdf }} *{{cite book |last= Young |first= P. |year= 1985 |contribution= Gödel theorems, exponential difficulty and undecidability of arithmetic theories: an exposition |title= Recursion Theory, American Mathematical Society |editor= A. Nerode and R. Shore |pages= 503–522 }} *{{cite thesis |last= Zoethout |first= Jetze |date= February 1, 2015 |title= Interpretations in Presburger Arithmetic (Bachelor Thesis) |url= https://studenttheses.uu.nl/bitstream/handle/20.500.12932/20281/Thesis.pdf |access-date= 2023-08-25 }} {{Refend}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)