Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Probability
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Not (necessarily) mutually exclusive events=== If the events are not (necessarily) mutually exclusive then<math display="block">P\left(A \hbox{ or } B\right) = P(A \cup B) = P\left(A\right)+P\left(B\right)-P\left(A \mbox{ and } B\right).</math> Rewritten,<math display="block"> P\left( A\cup B\right) =P\left( A\right) +P\left( B\right) -P\left( A\cap B\right) </math> For example, when drawing a card from a deck of cards, the chance of getting a heart or a face card (J, Q, K) (or both) is <math>\tfrac{13}{52} + \tfrac{12}{52} - \tfrac{3}{52} = \tfrac{11}{26},</math> since among the 52 cards of a deck, 13 are hearts, 12 are face cards, and 3 are both: here the possibilities included in the "3 that are both" are included in each of the "13 hearts" and the "12 face cards", but should only be counted once. This can be expanded further for multiple not (necessarily) mutually exclusive events. For three events, this proceeds as follows:<math display="block"> \begin{aligned}P\left( A\cup B\cup C\right) =&P\left( \left( A\cup B\right) \cup C\right) \\ =&P\left( A\cup B\right) +P\left( C\right) -P\left( \left( A\cup B\right) \cap C\right) \\ =&P\left( A\right) +P\left( B\right) -P\left( A\cap B\right) +P\left( C\right) -P\left( \left( A\cap C\right) \cup \left( B\cap C\right) \right) \\ =&P\left( A\right) +P\left( B\right) +P\left( C\right) -P\left( A\cap B\right) -\left( P\left( A\cap C\right) +P\left( B\cap C\right) -P\left( \left( A\cap C\right) \cap \left( B\cap C\right) \right) \right) \\ P\left( A\cup B\cup C\right) =&P\left( A\right) +P\left( B\right) +P\left( C\right) -P\left( A\cap B\right) -P\left( A\cap C\right) -P\left( B\cap C\right) +P\left( A\cap B\cap C\right) \end{aligned} </math>It can be seen, then, that this pattern can be repeated for any number of events.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)