Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Propositional formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Connectives of rhetoric, philosophy and mathematics === The following are the connectives common to rhetoric, philosophy and mathematics together with their [[truth table]]s. The symbols used will vary from author to author and between fields of endeavor. In general the abbreviations "T" and "F" stand for the evaluations TRUTH and FALSITY applied to the variables in the propositional formula (e.g. the assertion: "That cow is blue" will have the truth-value "T" for Truth or "F" for Falsity, as the case may be.). The connectives go by a number of different word-usages, e.g. "a IMPLIES b" is also said "IF a THEN b". Some of these are shown in the table. {|class="wikitable" |- style="font-size:9pt" align="center" valign="bottom" | width="48" Height="12" | | width="43.5" | | width="45" | | width="42" | | width="60" | | width="57.75" | |style="background-color:#E5E0EC" width="114.75" | b only if a | width="187.5" | | width="93" | | width="87.75" | | width="48" | | width="63" | |- style="font-size:9pt" align="center" | Height="12" | | | | | | |style="background-color:#E5E0EC" | b IS SUFFICIENT FOR a |style="background-color:#F2F2F2" | b PRECISELY WHEN a | | | | |- style="font-size:9pt" align="center" | Height="12" | | | | | | |style="background-color:#E5E0EC" | {{not a typo|a}} IS NECESSARY FOR b |style="background-color:#F2F2F2" | b IF AND ONLY IF a; b IFF a | | | | |- style="font-size:9pt" align="center" | Height="12" | | | | | |style="background-color:#FDE9D9" | inclusive OR |style="background-color:#E5E0EC" | IF b THEN a |style="background-color:#F2F2F2" | b IS NECESSARY AND SUFFICIENT FOR a | | | | |- style="font-size:9pt" align="center" | Height="12" | | |style="background-color:#EAF1DD" | negation |style="background-color:#EAF1DD" | negation |style="background-color:#DBE5F1" | conjunction |style="background-color:#FDE9D9" | disjunction |style="background-color:#E5E0EC" | implication |style="background-color:#F2F2F2" | biconditional | | | | |- style="font-size:9pt" align="center" ! Height="12" colspan="2" | variables |style="background-color:#EAF1DD" | NOT b |style="background-color:#EAF1DD" | NOT a |style="background-color:#DBE5F1" | b AND a |style="background-color:#FDE9D9" | b OR a |style="background-color:#E5E0EC" | b IMPLIES a |style="background-color:#F2F2F2" | b IS [[Logical equivalence|logically equivalent]] TO a *** | f IS A tautology | NEITHER a NOR b | b stroke a | exclusive OR |- style="font-size:9pt" align="center" |style="font-weight:bold" Height="12" | b |style="font-weight:bold" | a |style="background-color:#EAF1DD;font-weight:bold" | ¬(b) |style="background-color:#EAF1DD;font-weight:bold" | ¬(a) |style="background-color:#DBE5F1;font-weight:bold" | (b ∧ a) |style="background-color:#FDE9D9;font-weight:bold" | (b ∨ a) |style="background-color:#E5E0EC;font-weight:bold" | (b β a) |style="background-color:#F2F2F2;font-weight:bold" | (b β a) | (f = formula) | (a NOR b) |style="font-weight:bold" | (b|a) |style="font-weight:bold" | various |- align="center" | Height="12" | F | F |style="background-color:#EAF1DD" | T |style="background-color:#EAF1DD" | T |style="background-color:#DBE5F1" | F |style="background-color:#FDE9D9" | F |style="background-color:#E5E0EC;font-size:9pt" | T |style="background-color:#F2F2F2;font-size:9pt" | T |style="font-size:9pt" | T |style="font-size:9pt" | T | T |style="font-size:9pt" | F |- align="center" | Height="12" | F |style="font-size:9pt" | T |style="background-color:#EAF1DD" | T |style="background-color:#EAF1DD;font-size:9pt" | F |style="background-color:#DBE5F1" | F |style="background-color:#FDE9D9;font-size:9pt" | T |style="background-color:#E5E0EC;font-size:9pt" | T |style="background-color:#F2F2F2;font-size:9pt" | F |style="font-size:9pt" | T |style="font-size:9pt" | F | T |style="font-size:9pt" | T |- align="center" |style="font-size:9pt" Height="12" | T | F |style="background-color:#EAF1DD" | F |style="background-color:#EAF1DD" | T |style="background-color:#DBE5F1" | F |style="background-color:#FDE9D9;font-size:9pt" | T |style="background-color:#E5E0EC;font-size:9pt" | F |style="background-color:#F2F2F2;font-size:9pt" | F |style="font-size:9pt" | T |style="font-size:9pt" | F | T |style="font-size:9pt" | T |- align="center" |style="font-size:9pt" Height="12" | T |style="font-size:9pt" | T |style="background-color:#EAF1DD" | F |style="background-color:#EAF1DD;font-size:9pt" | F |style="background-color:#DBE5F1;font-size:9pt" | T |style="background-color:#FDE9D9;font-size:9pt" | T |style="background-color:#E5E0EC;font-size:9pt" | T |style="background-color:#F2F2F2;font-size:9pt" | T |style="font-size:9pt" | T |style="font-size:9pt" | F |style="font-size:9pt" | F |style="font-size:9pt" | F |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)