Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quadratic residue
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Pairs of residues and nonresidues=== Modulo a prime ''p'', the number of pairs ''n'', ''n'' + 1 where ''n'' R ''p'' and ''n'' + 1 R ''p'', or ''n'' N ''p'' and ''n'' + 1 R ''p'', etc., are almost equal. More precisely,<ref>Lemmermeyer, p. 29 ex. 1.22; cf pp. 26–27, Ch. 10</ref><ref>Crandall & Pomerance, ex 2.38, pp 106–108</ref> let ''p'' be an odd prime. For ''i'', ''j'' = 0, 1 define the sets :<math>A_{ij}=\left\{k\in\{1,2,\dots,p-2\}: \left(\frac{k}{p}\right)=(-1)^i\land\left(\frac{k+1}{p}\right)=(-1)^j\right\},</math> and let :<math>\alpha_{ij} = |A_{ij}|.</math> That is, :α<sub>00</sub> is the number of residues that are followed by a residue, :α<sub>01</sub> is the number of residues that are followed by a nonresidue, :α<sub>10</sub> is the number of nonresidues that are followed by a residue, and :α<sub>11</sub> is the number of nonresidues that are followed by a nonresidue. Then if ''p'' ≡ 1 (mod 4) :<math>\alpha_{00} = \frac{p-5}{4},\;\alpha_{01} =\alpha_{10} =\alpha_{11} = \frac{p-1}{4} </math> and if ''p'' ≡ 3 (mod 4) :<math>\alpha_{01} = \frac{p+1}{4},\;\alpha_{00} =\alpha_{10} =\alpha_{11} = \frac{p-3}{4}. </math> <blockquote>For example: (residues in '''bold''') Modulo 17 :'''1''', '''2''', 3, '''4''', 5, 6, 7, '''8''', '''9''', 10, 11, 12, '''13''', 14, '''15''', '''16''' ::''A''<sub>00</sub> = {1,8,15}, ::''A''<sub>01</sub> = {2,4,9,13}, ::''A''<sub>10</sub> = {3,7,12,14}, ::''A''<sub>11</sub> = {5,6,10,11}. Modulo 19 :'''1''', 2, 3, '''4''', '''5''', '''6''', '''7''', 8, '''9''', 10, '''11''', 12, 13, 14, 15, '''16''', '''17''', 18 ::''A''<sub>00</sub> = {4,5,6,16}, ::''A''<sub>01</sub> = {1,7,9,11,17}, ::''A''<sub>10</sub> = {3,8,10,15}, ::''A''<sub>11</sub> = {2,12,13,14}. </blockquote> Gauss (1828)<ref>Gauss, ''Theorie der biquadratischen Reste, Erste Abhandlung'' (pp 511–533 of the ''Untersuchungen über hohere Arithmetik)''</ref> introduced this sort of counting when he proved that if ''p'' ≡ 1 (mod 4) then ''x''<sup>4</sup> ≡ 2 (mod ''p'') can be solved if and only if ''p'' = ''a''<sup>2</sup> + 64 ''b''<sup>2</sup>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)