Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Reed–Solomon error correction
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Simple encoding procedure: The message as a sequence of coefficients ==== In the original construction of Reed and Solomon, the message <math>m=(m_0,\dots,m_{k-1}) \in F^k </math> is mapped to the polynomial <math>p_m</math> with <math display="block">p_m(a) = \sum_{i=0}^{k-1} m_i a^{i} \,.</math> The codeword of <math>m</math> is obtained by evaluating <math>p_m</math> at <math>n</math> different points <math>a_0, \dots, a_{n-1}</math> of the field <math>F</math>.<ref name="ReedSolomon"/> Thus the classical encoding function <math>C:F^k \to F^n</math> for the Reed–Solomon code is defined as follows: <math display="block">C(m) = \begin{bmatrix} p_m(a_0) \\ p_m(a_1) \\ \cdots \\ p_m(a_{n-1}) \end{bmatrix}</math> This function <math>C</math> is a [[linear mapping]], that is, it satisfies <math>C(m) = Am </math> for the following <math>n \times k</math>-matrix <math>A</math> with elements from <math>F</math>: <math display="block">C(m) = Am = \begin{bmatrix} 1 & a_0 & a_0^2 & \dots & a_0^{k-1} \\ 1 & a_1 & a_1^2 & \dots & a_1^{k-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_{n-1} & a_{n-1}^2 & \dots & a_{n-1}^{k-1} \end{bmatrix} \begin{bmatrix} m_0 \\ m_1 \\ \vdots \\ m_{k-1} \end{bmatrix} </math> This matrix is a [[Vandermonde matrix]] over <math>F</math>. In other words, the Reed–Solomon code is a [[linear code]], and in the classical encoding procedure, its [[Linear code#Properties|generator matrix]] is <math>A</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)