Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Reionization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Dwarf galaxies === [[Dwarf galaxies]] are currently considered to be the primary source of ionizing photons during the epoch of reionization.<ref name="Bouwens_LLG">{{cite journal |author=Bouwens |first=R. J. |display-authors=etal |date=2012 |title=Lower-luminosity Galaxies Could Reionize the Universe: Very Steep Faint-end Slopes to the UV Luminosity Functions at z >= 5-8 from the HUDF09 WFC3/IR Observations |journal=The Astrophysical Journal Letters |volume=752 |issue=1 |pages=L5 |arxiv=1105.2038 |bibcode=2012ApJ...752L...5B |doi=10.1088/2041-8205/752/1/L5 |s2cid=118856513}}</ref><ref>{{Cite journal |last1=Atek |first1=Hakim |last2=Richard |first2=Johan |last3=Jauzac |first3=Mathilde |last4=Kneib |first4=Jean-Paul |last5=Natarajan |first5=Priyamvada |last6=Limousin |first6=Marceau |last7=Schaerer |first7=Daniel |last8=Jullo |first8=Eric |last9=Ebeling |first9=Harald |last10=Egami |first10=Eiichi |last11=Clement |first11=Benjamin |date=2015-11-18 |title=Are ultra-faint galaxies at z = 6–8 responsible for cosmic reionization? Combined constraints from the Hubble frontier fields clusters and parallels |url=https://iopscience.iop.org/article/10.1088/0004-637X/814/1/69 |journal=The Astrophysical Journal |volume=814 |issue=1 |pages=69 |doi=10.1088/0004-637X/814/1/69 |arxiv=1509.06764 |bibcode=2015ApJ...814...69A |s2cid=73567045 |issn=1538-4357}}</ref> For most scenarios, this would require the log-slope of the UV galaxy [[Luminosity function (astronomy)|luminosity function]], often denoted α, to be steeper than it is today, approaching α = -2.<ref name=Bouwens_LLG/> With the advent of the ''James Webb Space Telescope'' (JWST), constraints on the UV luminosity function at the Epoch of Reionization have become commonplace,<ref>{{Cite journal |last1=Harikane |first1=Yuichi |last2=Ouchi |first2=Masami |last3=Oguri |first3=Masamune |last4=Ono |first4=Yoshiaki |last5=Nakajima |first5=Kimihiko |last6=Isobe |first6=Yuki |last7=Umeda |first7=Hiroya |last8=Mawatari |first8=Ken |last9=Zhang |first9=Yechi |date=2023-03-01 |title=A Comprehensive Study of Galaxies at z ∼ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch |journal=The Astrophysical Journal Supplement Series |volume=265 |issue=1 |pages=5 |doi=10.3847/1538-4365/acaaa9 |arxiv=2208.01612 |bibcode=2023ApJS..265....5H |issn=0067-0049 |doi-access=free }}</ref><ref>{{Cite journal |last1=McLeod |first1=D. J. |last2=Donnan |first2=C. T. |last3=McLure |first3=R. J. |last4=Dunlop |first4=J. S. |last5=Magee |first5=D. |last6=Begley |first6=R. |last7=Carnall |first7=A. C. |last8=Cullen |first8=F. |last9=Ellis |first9=R. S. |last10=Hamadouche |first10=M. L. |last11=Stanton |first11=T. M. |date=2023 |title=The galaxy UV luminosity function at z ≃ 11 from a suite of public JWST ERS, ERO and Cycle-1 programs |journal=Monthly Notices of the Royal Astronomical Society |volume=527 |issue=3 |page=5004 |doi=10.1093/mnras/stad3471 |doi-access=free |arxiv=2304.14469|bibcode=2024MNRAS.527.5004M }}</ref> allowing for better constraints on the faint, low-mass population of galaxies. In 2014, two separate studies identified two [[Pea galaxy|Green Pea galaxies]] (GPs) to be likely [[Lyc photon|Lyman Continuum]] (LyC)-emitting candidates.<ref name="Jaskot_2014(b)">{{cite journal |author=Jaskot |first1=A. E. |last2=Oey |first2=M. S. |name-list-style=amp |date=2014 |title=Linking Ly-alpha and Low-Ionization Transitions at Low Optical Depth |journal=The Astrophysical Journal Letters |volume=791 |issue=2 |pages=L19 |arxiv=1406.4413 |bibcode=2014ApJ...791L..19J |doi=10.1088/2041-8205/791/2/L19 |s2cid=119294145}}</ref><ref name=Verhamme_2014>{{cite arXiv |first1=A. | last1=Verhamme |first2=I. | last2=Orlitova |first3=D. | last3=Schaerer|first4=M. | last4=Hayes |title=On the use of Lyman-alpha to detect Lyman continuum leaking galaxies| date=2014| class=astro-ph.GA |eprint=1404.2958v1 }}</ref> Compact dwarf star-forming galaxies like the GPs are considered excellent low-redshift analogs of high-redshift Lyman-alpha and LyC emitters (LAEs and LCEs, respectively).<ref>{{Cite journal |last1=Izotov |first1=Y. I. |last2=Guseva |first2=N. G. |last3=Fricke |first3=K. J. |last4=Henkel |first4=C. |last5=Schaerer |first5=D. |last6=Thuan |first6=T. X. |date=February 2021 |title=Low-redshift compact star-forming galaxies as analogues of high-redshift star-forming galaxies |url=https://www.aanda.org/10.1051/0004-6361/202039772 |journal=Astronomy & Astrophysics |volume=646 |pages=A138 |doi=10.1051/0004-6361/202039772 |arxiv=2103.01505 |bibcode=2021A&A...646A.138I |s2cid=232092358 |issn=0004-6361}}</ref> At that time, only two other LCEs were known: [[Haro 11]] and [[Tololo-1247-232]].<ref name=Jaskot_2014(b)/><ref name=Verhamme_2014/><ref name="nakajima">{{cite journal |author=Nakajima |first1=K. |last2=Ouchi |first2=M. |name-list-style=amp |date=2014 |title=Ionization state of inter-stellar medium in galaxies: evolution, SFR-M*-Z dependence, and ionizing photon escape |journal=[[Monthly Notices of the Royal Astronomical Society]] |volume=442 |issue=1 |pages=900–916 |arxiv=1309.0207 |bibcode=2014MNRAS.442..900N |doi=10.1093/mnras/stu902 |doi-access=free |s2cid=118617426}}</ref> Finding local LyC emitters has thus become crucial to the theories about the early universe and the epoch of reionization.<ref name=Jaskot_2014(b)/><ref name=Verhamme_2014/> Subsequently, motivated, a series of surveys have been conducted using ''Hubble Space Telescope''<nowiki/>'s Cosmic Origins Spectrograph (''HST''/COS) to measure the LyC directly.<ref>{{Cite journal |last1=Izotov |first1=Y. I. |last2=Orlitová |first2=I. |last3=Schaerer |first3=D. |last4=Thuan |first4=T. X. |last5=Verhamme |first5=A. |last6=Guseva |first6=N. G. |last7=Worseck |first7=G. |date=2016-01-14 |title=Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy |url=https://www.nature.com/articles/nature16456 |journal=Nature |language=en |volume=529 |issue=7585 |pages=178–180 |doi=10.1038/nature16456 |pmid=26762455 |arxiv=1601.03068 |bibcode=2016Natur.529..178I |s2cid=3033749 |issn=0028-0836}}</ref><ref>{{Cite journal |last1=Izotov |first1=Y. I. |last2=Schaerer |first2=D. |last3=Thuan |first3=T. X. |last4=Worseck |first4=G. |last5=Guseva |first5=N. G. |last6=Orlitová |first6=I. |last7=Verhamme |first7=A. |date=2016-10-01 |title=Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=461 |issue=4 |pages=3683–3701 |doi=10.1093/mnras/stw1205 |issn=0035-8711|doi-access=free |arxiv=1605.05160 }}</ref><ref>{{Cite journal |last1=Izotov |first1=Y. I. |last2=Schaerer |first2=D. |last3=Worseck |first3=G. |last4=Guseva |first4=N. G. |last5=Thuan |first5=T. X. |last6=Verhamme |first6=A. |last7=Orlitová |first7=I. |last8=Fricke |first8=K. J. |date=2018-03-11 |title=J1154+2443: a low-redshift compact star-forming galaxy with a 46 per cent leakage of Lyman continuum photons |url=http://academic.oup.com/mnras/article/474/4/4514/4683272 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=474 |issue=4 |pages=4514–4527 |doi=10.1093/mnras/stx3115 |issn=0035-8711|doi-access=free |arxiv=1711.11449 }}</ref><ref>{{Cite journal |last1=Izotov |first1=Y. I. |last2=Worseck |first2=G. |last3=Schaerer |first3=D. |last4=Guseva |first4=N. G |last5=Thuan |first5=T. X. |last6=Fricke |last7=Verhamme |first7=A. |last8=Orlitová |first8=I. |date=2018-08-21 |title=Low-redshift Lyman continuum leaking galaxies with high [O iii]/[O ii] ratios |url=https://academic.oup.com/mnras/article/478/4/4851/5004866 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=478 |issue=4 |pages=4851–4865 |doi=10.1093/mnras/sty1378 |issn=0035-8711|doi-access=free |arxiv=1805.09865 }}</ref><ref>{{Cite journal |last1=Wang |first1=Bingjie |last2=Heckman |first2=Timothy M. |last3=Leitherer |first3=Claus |last4=Alexandroff |first4=Rachel |last5=Borthakur |first5=Sanchayeeta |last6=Overzier |first6=Roderik A. |date=2019-10-30 |title=A New Technique for Finding Galaxies Leaking Lyman-continuum Radiation: [S ii]-deficiency |journal=The Astrophysical Journal |volume=885 |issue=1 |pages=57 |doi=10.3847/1538-4357/ab418f |arxiv=1909.01368 |bibcode=2019ApJ...885...57W |issn=1538-4357 |doi-access=free }}</ref><ref>{{Cite journal |last1=Izotov |first1=Y. I. |last2=Worseck |first2=G. |last3=Schaerer |first3=D. |last4=Guseva |first4=N. G. |last5=Chisholm |first5=J. |last6=Thuan |first6=T. X. |last7=Fricke |first7=K. J. |last8=Verhamme |first8=A. |date=2021-03-22 |title=Lyman continuum leakage from low-mass galaxies with M ⋆ < 108 M⊙ |url=https://academic.oup.com/mnras/article/503/2/1734/6157755 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=503 |issue=2 |pages=1734–1752 |doi=10.1093/mnras/stab612 |doi-access=free |issn=0035-8711|arxiv=2103.01514 }}</ref> These efforts culminated in the Low-redshift Lyman Continuum Survey,<ref name=":0">{{Cite journal |last1=Flury |first1=Sophia R. |last2=Jaskot |first2=Anne E. |last3=Ferguson |first3=Harry C. |last4=Worseck |first4=Gábor |last5=Makan |first5=Kirill |last6=Chisholm |first6=John |last7=Saldana-Lopez |first7=Alberto |last8=Schaerer |first8=Daniel |last9=McCandliss |first9=Stephan |last10=Wang |first10=Bingjie |last11=Ford |first11=N. M. |last12=Heckman |first12=Timothy |last13=Ji |first13=Zhiyuan |last14=Giavalisco |first14=Mauro |last15=Amorin |first15=Ricardo |date=2022-05-01 |title=The Low-redshift Lyman Continuum Survey. I. New, Diverse Local Lyman Continuum Emitters |journal=The Astrophysical Journal Supplement Series |volume=260 |issue=1 |pages=1 |doi=10.3847/1538-4365/ac5331 |arxiv=2201.11716 |bibcode=2022ApJS..260....1F |issn=0067-0049 |doi-access=free }}</ref> a large ''HST''/COS program which nearly tripled the number of direct measurements of the LyC from dwarf galaxies. To date, at least 50 LCEs have been confirmed using ''HST''/COS<ref name=":0" /> with LyC escape fractions anywhere from ≈ 0 to 88%. The results from the Low-redshift Lyman Continuum Survey have provided the empirical foundation necessary to identify and understand LCEs at the Epoch of Reionization.<ref>{{Cite journal |last1=Saldana-Lopez |first1=Alberto |last2=Schaerer |first2=Daniel |last3=Chisholm |first3=John |last4=Flury |first4=Sophia R. |last5=Jaskot |first5=Anne E. |last6=Worseck |first6=Gábor |last7=Makan |first7=Kirill |last8=Gazagnes |first8=Simon |last9=Mauerhofer |first9=Valentin |last10=Verhamme |first10=Anne |last11=Amorín |first11=Ricardo O. |last12=Ferguson |first12=Harry C. |last13=Giavalisco |first13=Mauro |last14=Grazian |first14=Andrea |last15=Hayes |first15=Matthew J. |date=July 2022 |title=The Low-Redshift Lyman Continuum Survey: Unveiling the ISM properties of low- z Lyman-continuum emitters |url=https://www.aanda.org/10.1051/0004-6361/202141864 |journal=Astronomy & Astrophysics |volume=663 |pages=A59 |doi=10.1051/0004-6361/202141864 |arxiv=2201.11800 |bibcode=2022A&A...663A..59S |s2cid=246411216 |issn=0004-6361}}</ref><ref>{{Cite journal |last1=Flury |first1=Sophia R. |last2=Jaskot |first2=Anne E. |last3=Ferguson |first3=Harry C. |last4=Worseck |first4=Gábor |last5=Makan |first5=Kirill |last6=Chisholm |first6=John |last7=Saldana-Lopez |first7=Alberto |last8=Schaerer |first8=Daniel |last9=McCandliss |first9=Stephan R. |last10=Xu |first10=Xinfeng |last11=Wang |first11=Bingjie |last12=Oey |first12=M. S. |last13=Ford |first13=N. M. |last14=Heckman |first14=Timothy |last15=Ji |first15=Zhiyuan |date=2022-05-01 |title=The Low-redshift Lyman Continuum Survey. II. New Insights into LyC Diagnostics |journal=The Astrophysical Journal |volume=930 |issue=2 |pages=126 |doi=10.3847/1538-4357/ac61e4 |arxiv=2203.15649 |bibcode=2022ApJ...930..126F |issn=0004-637X |doi-access=free }}</ref><ref>{{Cite journal |last1=Chisholm |first1=J. |last2=Saldana-Lopez |first2=A. |last3=Flury |first3=S. |last4=Schaerer |first4=D. |last5=Jaskot |first5=A. |last6=Amorín |first6=R. |last7=Atek |first7=H. |last8=Finkelstein |first8=S. L. |last9=Fleming |first9=B. |last10=Ferguson |first10=H. |last11=Fernández |first11=V. |last12=Giavalisco |first12=M. |last13=Hayes |first13=M. |last14=Heckman |first14=T. |last15=Henry |first15=A. |date=2022-11-09 |title=The far-ultraviolet continuum slope as a Lyman Continuum escape estimator at high redshift |url=https://academic.oup.com/mnras/article/517/4/5104/6753210 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=517 |issue=4 |pages=5104–5120 |doi=10.1093/mnras/stac2874 |doi-access=free |issn=0035-8711|arxiv=2207.05771 }}</ref> With new observations from ''JWST'', populations of LCEs are now being studied at cosmological redshifts greater than 6, allowing for the first time a detailed and direct assessment of the origins of cosmic Reionization.<ref>{{Cite journal |last1=Mascia |first1=S. |last2=Pentericci |first2=L. |last3=Calabrò |first3=A. |last4=Treu |first4=T. |last5=Santini |first5=P. |last6=Yang |first6=L. |last7=Napolitano |first7=L. |last8=Roberts-Borsani |first8=G. |last9=Bergamini |first9=P. |last10=Grillo |first10=C. |last11=Rosati |first11=P. |last12=Vulcani |first12=B. |last13=Castellano |first13=M. |last14=Boyett |first14=K. |last15=Fontana |first15=A. |date=April 2023 |title=Closing in on the sources of cosmic reionization: First results from the GLASS-JWST program |url=https://www.aanda.org/10.1051/0004-6361/202345866 |journal=Astronomy & Astrophysics |volume=672 |pages=A155 |doi=10.1051/0004-6361/202345866 |arxiv=2301.02816 |bibcode=2023A&A...672A.155M |s2cid=255546596 |issn=0004-6361}}</ref> Combining these large samples of galaxies with new constraints on the UV luminosity function indicates that dwarf galaxies overwhelmingly contribute to Reionization.<ref>{{Cite journal |last1=Mascia |first1=S. |last2=Pentericci |first2=L. |last3=Calabrò |first3=A. |last4=Santini |first4=P. |last5=Napolitano |first5=L. |last6=Haro |first6=P. Arrabal |last7=Castellano |first7=M. |last8=Dickinson |first8=M. |last9=Ocvirk |first9=P. |last10=Lewis |first10=J. S. W. |last11=Amorín |first11=R. |last12=Bagley |first12=M. |last13=Cleri |first13=R. N. J. |last14=Costantin |first14=L. |last15=Dekel |first15=A. |date=2024 |title=New insight on the nature of cosmic reionizers from the CEERS survey |journal=Astronomy and Astrophysics |volume=685 |pages=A3 |doi=10.1051/0004-6361/202347884 |arxiv=2309.02219|bibcode=2024A&A...685A...3M }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)