Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ridge regression
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Determination of the Tikhonov factor== The optimal regularization parameter <math>\alpha</math> is usually unknown and often in practical problems is determined by an ''ad hoc'' method. A possible approach relies on the Bayesian interpretation described below. Other approaches include the [[discrepancy principle]], [[cross-validation (statistics)|cross-validation]], [[L-curve method]],<ref>P. C. Hansen, "The L-curve and its use in the numerical treatment of inverse problems", [https://www.sintef.no/globalassets/project/evitameeting/2005/lcurve.pdf]</ref> [[restricted maximum likelihood]] and [[unbiased predictive risk estimator]]. [[Grace Wahba]] proved that the optimal parameter, in the sense of [[cross-validation (statistics)#Leave-one-out cross-validation|leave-one-out cross-validation]] minimizes<ref>{{cite journal |last=Wahba |first=G. |year=1990 |title=Spline Models for Observational Data |journal=CBMS-NSF Regional Conference Series in Applied Mathematics |publisher=Society for Industrial and Applied Mathematics |bibcode=1990smod.conf.....W }}</ref><ref>{{cite journal |last3=Wahba |first3=G. |first1=G. |last1=Golub |first2=M. |last2=Heath |year=1979 |title=Generalized cross-validation as a method for choosing a good ridge parameter |journal=Technometrics |volume=21 |issue=2 |pages=215β223 |url=http://www.stat.wisc.edu/~wahba/ftp1/oldie/golub.heath.wahba.pdf |doi=10.1080/00401706.1979.10489751}}</ref> <math display="block">G = \frac{\operatorname{RSS}}{\tau^2} = \frac{\left\|X \hat{\beta} - y\right\|^2}{ \left[\operatorname{Tr}\left(I - X\left(X^\mathsf{T} X + \alpha^2 I\right)^{-1} X^\mathsf{T}\right)\right]^2},</math> where <math>\operatorname{RSS}</math> is the [[residual sum of squares]], and <math>\tau</math> is the [[effective number of degrees of freedom]]. Using the previous SVD decomposition, we can simplify the above expression: <math display="block">\operatorname{RSS} = \left\| y - \sum_{i=1}^q (u_i' b) u_i \right\|^2 + \left\| \sum _{i=1}^q \frac{\alpha^2}{\sigma_i^2 + \alpha^2} (u_i' b) u_i \right\|^2,</math> <math display="block">\operatorname{RSS} = \operatorname{RSS}_0 + \left\| \sum_{i=1}^q \frac{\alpha^2}{\sigma_i^2 + \alpha^2} (u_i' b) u_i \right\|^2,</math> and <math display="block">\tau = m - \sum_{i=1}^q \frac{\sigma_i^2}{\sigma_i^2 + \alpha^2} = m - q + \sum_{i=1}^q \frac{\alpha^2}{\sigma _i^2 + \alpha^2}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)