Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ring theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Finitely generated projective module over a ring and Picard group=== Let ''R'' be a commutative ring and <math>\mathbf{P}(R)</math> the set of isomorphism classes of finitely generated [[projective module]]s over ''R''; let also <math>\mathbf{P}_n(R)</math> subsets consisting of those with constant rank ''n''. (The rank of a module ''M'' is the continuous function <math>\operatorname{Spec}R \to \mathbb{Z}, \, \mathfrak{p} \mapsto \dim M \otimes_R k(\mathfrak{p})</math>.<ref>{{harvnb|Weibel|2013|loc=Ch I, Definition 2.2.3}}</ref>) <math>\mathbf{P}_1(R)</math> is usually denoted by Pic(''R''). It is an abelian group called the [[Picard group]] of ''R''.<ref>{{harvnb|Weibel|2013|loc=Definition preceding Proposition 3.2 in Ch I}}</ref> If ''R'' is an integral domain with the field of fractions ''F'' of ''R'', then there is an exact sequence of groups:<ref>{{harvnb|Weibel|2013|loc=Ch I, Proposition 3.5}}</ref> :<math>1 \to R^* \to F^* \overset{f \mapsto fR}\to \operatorname{Cart}(R) \to \operatorname{Pic}(R) \to 1</math> where <math>\operatorname{Cart}(R)</math> is the set of [[fractional ideal]]s of ''R''. If ''R'' is a [[Regular ring|regular]] domain (i.e., regular at any prime ideal), then Pic(R) is precisely the [[divisor class group]] of ''R''.<ref>{{harvnb|Weibel|2013|loc=Ch I, Corollary 3.8.1}}</ref> For example, if ''R'' is a principal ideal domain, then Pic(''R'') vanishes. In algebraic number theory, ''R'' will be taken to be the [[ring of integers]], which is Dedekind and thus regular. It follows that Pic(''R'') is a finite group ([[finiteness of class number]]) that measures the deviation of the ring of integers from being a PID.<!-- discuss coordinate ring --> One can also consider the [[group completion]] of <math>\mathbf{P}(R)</math>; this results in a commutative ring K<sub>0</sub>(R). Note that K<sub>0</sub>(R) = K<sub>0</sub>(S) if two commutative rings ''R'', ''S'' are Morita equivalent. {{See also|Algebraic K-theory}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)