Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rotating reference frame
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Relation between accelerations in the two frames === Acceleration is the second time derivative of position, or the first time derivative of velocity :<math> \mathbf{a}_{\mathrm{i}} \ \stackrel{\mathrm{def}}{=}\ \left( \frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}t^{2}}\right)_{\mathrm{i}} = \left( \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} \right)_{\mathrm{i}} = \left[ \left( \frac{\mathrm{d}}{\mathrm{d}t} \right)_{\mathrm{r}} + \boldsymbol\Omega \times \right] \left[\left( \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \right)_{\mathrm{r}} + \boldsymbol\Omega \times \mathbf{r} \right] \ , </math> where subscript <math>\mathrm{i}</math> means the inertial frame of reference, <math>\mathrm{r}</math> the rotating frame of reference, and where the expression, again, <math>\boldsymbol\Omega \times</math> in the bracketed expression on the left is to be interpreted as an [[Operator (mathematics)|operator]] working onto the bracketed expression on the right. As <math>\boldsymbol\Omega\times\boldsymbol\Omega=\boldsymbol 0</math>, the first time derivatives of <math>\boldsymbol\Omega</math> inside either frame, when expressed with respect to the basis of e.g. the inertial frame, coincide. Carrying out the [[Derivative|differentiation]]s and re-arranging some terms yields the acceleration ''relative to the rotating'' reference frame, <math>\mathbf{a}_{\mathrm{r}}</math> :<math> \mathbf{a}_{\mathrm{r}} = \mathbf{a}_{\mathrm{i}} - 2 \boldsymbol\Omega \times \mathbf{v}_{\mathrm{r}} - \boldsymbol\Omega \times (\boldsymbol\Omega \times \mathbf{r}) - \frac{\mathrm{d}\boldsymbol\Omega}{\mathrm{d}t} \times \mathbf{r} </math> where <math>\mathbf{a}_{\mathrm{r}} \ \stackrel{\mathrm{def}}{=}\ \left( \tfrac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}t^{2}} \right)_{\mathrm{r}}</math> is the apparent acceleration in the rotating reference frame, the term <math>-\boldsymbol\Omega \times (\boldsymbol\Omega \times \mathbf{r})</math> represents [[centrifugal acceleration]], and the term <math>-2 \boldsymbol\Omega \times \mathbf{v}_{\mathrm{r}}</math> is the [[Coriolis acceleration]]. The last term, <math>-\tfrac{\mathrm{d}\boldsymbol\Omega}{\mathrm{d}t} \times \mathbf{r}</math>, is the [[Euler acceleration]] and is zero in uniformly rotating frames.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)