Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rotation matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===General 3D rotations=== Other 3D rotation matrices can be obtained from these three using [[matrix multiplication]]. For example, the product :<math>\begin{align} R = R_z(\alpha) \, R_y(\beta) \, R_x(\gamma) &= \overset\text{yaw} {\begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}} \overset\text{pitch} {\begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \\ \end{bmatrix}} \overset\text{roll} {\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \gamma & -\sin \gamma \\ 0 & \sin \gamma & \cos \gamma \\ \end{bmatrix}} \\ &= \begin{bmatrix} \cos\alpha\cos\beta & \cos\alpha\sin\beta\sin\gamma - \sin\alpha\cos\gamma & \cos\alpha\sin\beta\cos\gamma + \sin\alpha\sin\gamma \\ \sin\alpha\cos\beta & \sin\alpha\sin\beta\sin\gamma + \cos\alpha\cos\gamma & \sin\alpha\sin\beta\cos\gamma - \cos\alpha\sin\gamma \\ -\sin\beta & \cos\beta\sin\gamma & \cos\beta\cos\gamma \\ \end{bmatrix} \end{align}</math> represents a rotation whose [[yaw, pitch, and roll]] angles are {{mvar|α}}, {{mvar|β}} and {{mvar|γ}}, respectively. More formally, it is an [[Euler angles#Conventions by intrinsic rotations|intrinsic rotation]] whose [[Tait–Bryan angles]] are {{mvar|α}}, {{mvar|β}}, {{mvar|γ}}, about axes {{mvar|z}}, {{mvar|y}}, {{mvar|x}}, respectively. Similarly, the product :<math>\begin{align} \\ R = R_x(\gamma) \, R_y(\beta) \, R_z(\alpha) &= \overset\text{roll} {\begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}} \overset\text{pitch} {\begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \\ \end{bmatrix}} \overset\text{yaw} {\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \\ \end{bmatrix}} \\ &= \begin{bmatrix} \cos\beta\cos\gamma & \sin\alpha\sin\beta\cos\gamma - \cos\alpha\sin\gamma & \cos\alpha\sin\beta\cos\gamma + \sin\alpha\sin\gamma \\ \cos\beta\sin\gamma & \sin\alpha\sin\beta\sin\gamma + \cos\alpha\cos\gamma & \cos\alpha\sin\beta\sin\gamma - \sin\alpha\cos\gamma \\ -\sin\beta & \sin\alpha\cos\beta & \cos\alpha\cos\beta \\ \end{bmatrix} \end{align}</math> represents an [[Euler angles#Conventions by extrinsic rotations|extrinsic rotation]] whose (improper) [[Euler angles]] are {{mvar|α}}, {{mvar|β}}, {{mvar|γ}}, about axes {{mvar|x}}, {{mvar|y}}, {{mvar|z}}. These matrices produce the desired effect only if they are used to premultiply [[column vector]]s, and (since in general matrix multiplication is not [[commutative]]) only if they are applied in the specified order (see [[#Ambiguities|Ambiguities]] for more details). The order of rotation operations is from right to left; the matrix adjacent to the column vector is the first to be applied, and then the one to the left.<ref>{{cite web |title=Rotation Matrices |url=http://extranet.nmrfam.wisc.edu/nmrfam_documents/bchm800/notes/chapt4.pdf |access-date=30 November 2021}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)