Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Scheme (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Arithmetic surfaces === If we consider a polynomial <math>f \in \mathbb{Z}[x,y]</math> then the affine scheme <math>X = \operatorname{Spec}(\mathbb{Z}[x,y]/(f))</math> has a canonical morphism to <math>\operatorname{Spec}\mathbb{Z}</math> and is called an [[arithmetic surface]]. The fibers <math>X_p = X \times_{\operatorname{Spec}(\mathbb{Z})}\operatorname{Spec}(\mathbb{F}_p)</math> are then algebraic curves over the finite fields <math>\mathbb{F}_p</math>. If <math>f(x,y) = y^2 - x^3 + ax^2 + bx + c</math> is an [[elliptic curve]], then the fibers over its discriminant locus, where <math display="block">\Delta_f = -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2 = 0 \ \text{mod}\ p,</math>are all singular schemes.<ref>{{Cite web |title=Elliptic curves |url=https://homepages.warwick.ac.uk/~maskal/MA426_EllipticCurves_2018.pdf |page=20}}</ref> For example, if <math>p</math> is a prime number and <math display="block">X = \operatorname{Spec} \frac{\mathbb{Z}[x,y]}{(y^2 - x^3 - p)}</math> then its discriminant is <math>-27p^2</math>. This curve is singular over the prime numbers <math>3, p</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)