Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Shor's algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== The bottleneck === The runtime bottleneck of Shor's algorithm is quantum [[modular exponentiation]], which is by far slower than the [[quantum Fourier transform]] and classical pre-/post-processing. There are several approaches to constructing and optimizing circuits for modular exponentiation. The simplest and (currently) most practical approach is to mimic conventional arithmetic circuits with [[reversible computing|reversible gates]], starting with [[Adder (electronics)#Ripple-carry adder|ripple-carry adders]]. Knowing the base and the modulus of exponentiation facilitates further optimizations.<ref>{{cite journal |first1=Igor L. |last1=Markov |first2=Mehdi |last2=Saeedi |title=Constant-Optimized Quantum Circuits for Modular Multiplication and Exponentiation |journal=Quantum Information and Computation |volume=12 |issue=5β6 |pages=361β394 |year=2012 |doi=10.26421/QIC12.5-6-1 |arxiv=1202.6614 |bibcode = 2012arXiv1202.6614M |s2cid=16595181 }}</ref><ref>{{cite journal |first1=Igor L. |last1=Markov |first2=Mehdi |last2=Saeedi |title=Faster Quantum Number Factoring via Circuit Synthesis |journal=Phys. Rev. A |volume=87 |issue= 1|pages=012310 |year=2013 |arxiv=1301.3210 |bibcode = 2013PhRvA..87a2310M |doi = 10.1103/PhysRevA.87.012310 |s2cid=2246117 }}</ref> Reversible circuits typically use on the order of <math>n^3</math> gates for <math>n</math> qubits. Alternative techniques asymptotically improve gate counts by using [[quantum Fourier transform]]s, but are not competitive with fewer than 600 qubits owing to high constants.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)