Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Signed-digit representation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===For other number systems=== All base-<math>b</math> numerals can be represented as a subset of <math>\mathcal{D}^\mathbb{Z}</math>, the set of all [[doubly infinite sequence]]s of digits in <math>\mathcal{D}</math>, where <math>\mathbb{Z}</math> is the set of [[integers]], and the [[Ring (mathematics)|ring]] of base-<math>b</math> numerals is represented by the [[formal power series ring]] <math>\mathbb{Z}[[b,b^{-1}]]</math>, the doubly infinite series :<math>\sum_{i = -\infty}^{\infty}a_i b^i</math> where <math>a_i\in\mathbb{Z}</math> for <math>i\in\mathbb{Z}</math>. ====Integers modulo powers of {{math|''b''}}==== The set of all signed-digit representations of the [[Integers modulo n|integers modulo <math>b^n</math>]], <math>\mathbb{Z}\backslash b^n\mathbb{Z}</math> is given by the set <math>\mathcal{D}^n</math>, the set of all finite [[concatenation|concatenated]] strings of digits <math>d_{n - 1} \ldots d_0</math> of length <math>n</math>, with <math>n\in\mathbb{N}</math>. Each signed-digit representation <math>m \in \mathcal{D}^n</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{D}^n\rightarrow\mathbb{Z}/b^n\mathbb{Z}</math> :<math>v_\mathcal{D}(m) \equiv \sum_{i=0}^{n - 1}f_\mathcal{D}(d_{i})b^{i} \bmod b^n</math> ====Prüfer groups==== A [[Prüfer group]] is the [[quotient group]] <math>\mathbb{Z}(b^\infty) = \mathbb{Z}[1\backslash b]/\mathbb{Z}</math> of the integers and the <math>b</math>-adic rationals. The set of all signed-digit representations of the [[Prüfer group]] is given by the [[Kleene star]] <math>\mathcal{D}^*</math>, the set of all finite [[concatenation|concatenated]] strings of digits <math>d_{1} \ldots d_{n}</math>, with <math>n\in\mathbb{N}</math>. Each signed-digit representation <math>p \in \mathcal{D}^*</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{D}^*\rightarrow\mathbb{Z}(b^\infty)</math> :<math>v_\mathcal{D}(m) \equiv \sum_{i=1}^{n}f_\mathcal{D}(d_{i})b^{-i} \bmod 1</math> ====Circle group==== The [[circle group]] is the quotient group <math>\mathbb{T} = \mathbb{R}/\mathbb{Z}</math> of the integers and the real numbers. The set of all signed-digit representations of the [[circle group]] is given by the [[Cantor space]] <math>\mathcal{D}^\mathbb{N}</math>, the set of all right-infinite concatenated strings of digits <math>d_{1} d_{2} \ldots</math>. Each signed-digit representation <math>m \in \mathcal{D}^n</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{D}^\mathbb{N}\rightarrow\mathbb{T}</math> :<math>v_\mathcal{D}(m) \equiv \sum_{i=1}^{\infty}f_\mathcal{D}(d_{i})b^{-i} \bmod 1</math> The [[infinite series]] always [[Convergent series|converges]]. ===={{math|''b''}}-adic integers==== The set of all signed-digit representations of the [[p-adic integers|<math>b</math>-adic integers]], <math>\mathbb{Z}_b</math> is given by the [[Cantor space]] <math>\mathcal{D}^\mathbb{N}</math>, the set of all left-infinite concatenated strings of digits <math>\ldots d_{1} d_{0}</math>. Each signed-digit representation <math>m \in \mathcal{D}^n</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{D}^\mathbb{N}\rightarrow\mathbb{Z}_{b}</math> :<math>v_\mathcal{D}(m) = \sum_{i=0}^{\infty}f_\mathcal{D}(d_{i})b^{i}</math> ===={{math|''b''}}-adic solenoids==== The set of all signed-digit representations of the [[Solenoid (mathematics)#p-adic solenoids|<math>b</math>-adic solenoids]], <math>\mathbb{T}_b</math> is given by the [[Cantor space]] <math>\mathcal{D}^\mathbb{Z}</math>, the set of all [[doubly infinite]] concatenated strings of digits <math>\ldots d_{1} d_{0} d_{-1} \ldots</math>. Each signed-digit representation <math>m \in \mathcal{D}^n</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{D}^\mathbb{Z}\rightarrow\mathbb{T}_{b}</math> :<math>v_\mathcal{D}(m) = \sum_{i=-\infty}^{\infty}f_\mathcal{D}(d_{i})b^{i}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)