Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Simple continued fraction
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Some useful theorems=== If <math>\ a_0\ ,</math> <math>a_1\ ,</math> <math>a_2\ ,</math> <math>\ \ldots\ </math> is an infinite sequence of positive integers, define the sequences <math>\ h_n\ </math> and <math>\ k_n\ </math> recursively: {| border="0" cellpadding="5" cellspacing="10" align="none" |- |<math> h_{n} = a_n\ h_{n-1} + h_{n-2}\ ,</math> | | |<math> h_{-1} = 1\ ,</math> | |<math> h_{-2} = 0\ ;</math> |- |<math> k_{n}= a_n\ k_{n-1} + k_{n-2}\ ,</math> | | |<math> k_{-1} = 0\ ,</math> | |<math> k_{-2} = 1 ~.</math> |} <blockquote>'''Theorem 1.''' For any positive real number <math>\ x\ </math> :<math> \left[\ a_0;\ a_1,\ \dots, a_{n-1}, x\ \right]=\frac{x\ h_{n-1} + h_{n-2}}{\ x\ k_{n-1} + k_{n-2}\ }, \quad \left[\ a_0;\ a_1,\ \dots, a_{n-1} + x\ \right]=\frac{h_{n-1} + xh_{n-2}}{\ k_{n-1} + x k_{n-2}\ }</math> </blockquote> <blockquote>'''Theorem 2.''' The convergents of <math>\ [\ a_0\ ;</math> <math>a_1\ ,</math> <math>a_2\ ,</math> <math>\ldots\ ]\ </math> are given by :<math>\left[\ a_0;\ a_1,\ \dots, a_n\ \right] = \frac{h_n}{\ k_n\ } ~.</math> or in matrix form,<math display="block">\begin{bmatrix} h_n & h_{n-1} \\ k_n & k_{n-1} \end{bmatrix} = \begin{bmatrix} a_0 & 1 \\ 1 & 0 \end{bmatrix} \cdots \begin{bmatrix} a_n & 1 \\ 1 & 0 \end{bmatrix}</math> '''Theorem 3.''' If the <math>\ n</math>th convergent to a continued fraction is <math>\ \frac{ h_n}{ k_n }\ ,</math> then :<math> k_n\ h_{n-1} - k_{n-1}\ h_n = (-1)^n\ ,</math> or equivalently :<math> \frac{ h_n }{\ k_n\ } - \frac{ h_{n-1} }{\ k_{n-1}\ } = \frac{ (-1)^{n+1} }{\ k_{n-1}\ k_n\ } ~.</math> </blockquote> '''Corollary 1:''' Each convergent is in its lowest terms (for if <math>\ h_n\ </math> and <math>\ k_n\ </math> had a nontrivial common divisor it would divide <math>\ k_n\ h_{n-1} - k_{n-1}\ h_n\ ,</math> which is impossible). '''Corollary 2:''' The difference between successive convergents is a fraction whose numerator is unity: :<math> \frac{h_n}{k_n} - \frac{ h_{n-1} }{ k_{n-1} } = \frac{\ h_n\ k_{n-1} - k_n\ h_{n-1}\ }{\ k_n\ k_{n-1}\ } = \frac{ (-1)^{n+1} }{\ k_n\ k_{n-1}\ } ~.</math> '''Corollary 3:''' The continued fraction is equivalent to a series of alternating terms: :<math>a_0 + \sum_{n=0}^\infty \frac{ (-1)^n }{\ k_{n}\ k_{n+1}\ } ~.</math> '''Corollary 4:''' The matrix :<math>\begin{bmatrix} h_n & h_{n-1} \\ k_n & k_{n-1} \end{bmatrix} = \begin{bmatrix} a_0 & 1 \\ 1 & 0 \end{bmatrix} \cdots \begin{bmatrix} a_n & 1 \\ 1 & 0 \end{bmatrix}</math> has [[determinant]] <math>(-1)^{n+1}</math>, and thus belongs to the group of <math>\ 2\times 2\ </math> [[unimodular matrix|unimodular matrices]] <math>\ \mathrm{GL}(2,\mathbb{Z}) ~.</math> '''Corollary 5:''' The matrix<math display="block">\begin{bmatrix} h_n & h_{n-2} \\ k_n & k_{n-2} \end{bmatrix} = \begin{bmatrix} h_{n-1} & h_{n-2} \\ k_{n-1} & k_{n-2} \end{bmatrix} \begin{bmatrix} a_{n} & 0 \\ 1 & 1 \end{bmatrix}</math> has determinant <math>(-1)^na_n</math>, or equivalently,<math display="block"> \frac{ h_n }{\ k_n\ } - \frac{ h_{n-2} }{\ k_{n-2}\ } = \frac{ (-1)^{n} }{\ k_{n-2 }\ k_n\ }a_n</math>meaning that the odd terms monotonically decrease, while the even terms monotonically increase. '''Corollary 6:''' The denominator sequence <math>k_0, k_1, k_2, \dots</math> satisfies the recurrence relation <math>k_{-1} = 0, k_0 = 1, k_n = k_{n-1}a_n + k_{n-2}</math>, and grows at least as fast as the [[Fibonacci sequence]], which itself grows like <math>O(\phi^n)</math> where <math>\phi= 1.618\dots</math> is the [[golden ratio]]. <blockquote>'''Theorem 4.''' Each (<math>\ s</math>th) convergent is nearer to a subsequent (<math>\ n</math>th) convergent than any preceding (<math>\ r</math>th) convergent is. In symbols, if the <math>\ n</math>th convergent is taken to be <math>\ \left[\ a_0;\ a_1,\ \ldots,\ a_n\ \right] = x_n\ ,</math> then :<math> \left|\ x_r - x_n\ \right| > \left|\ x_s - x_n\ \right| </math> for all <math>\ r < s < n ~.</math> </blockquote> '''Corollary 1:''' The even convergents (before the <math>\ n</math>th) continually increase, but are always less than <math>\ x_n ~.</math> '''Corollary 2:''' The odd convergents (before the <math>\ n</math>th) continually decrease, but are always greater than <math>\ x_n ~.</math> <blockquote>'''Theorem 5.''' :<math>\frac{1}{\ k_n\ (k_{n+1} + k_n)\ } < \left|\ x - \frac{ h_n }{\ k_n\ }\ \right| < \frac{1}{\ k_n\ k_{n+1}\ } ~.</math> </blockquote> '''Corollary 1:''' A convergent is nearer to the limit of the continued fraction than any fraction whose denominator is less than that of the convergent. '''Corollary 2:''' A convergent obtained by terminating the continued fraction just before a large term is a close approximation to the limit of the continued fraction.<blockquote>'''Theorem 6:''' Consider the set of all open intervals with end-points <math>[0;a_1, \dots, a_n], [0;a_1, \dots, a_n+1]</math>. Denote it as <math>\mathcal C</math>. Any open subset of <math>[0, 1] \setminus \Q</math> is a disjoint union of sets from <math>\mathcal C</math>.</blockquote>'''Corollary:''' The infinite continued fraction provides a homeomorphism from the Baire space to <math>[0, 1] \setminus \Q</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)