Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Smoothness
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Multivariate differentiability classes=== A function <math>f:U\subseteq\mathbb{R}^n\to\mathbb{R}</math> defined on an open set <math>U</math> of <math>\mathbb{R}^n</math> is said<ref>{{cite book|author=Henri Cartan|title=Cours de calcul différentiel|year=1977|publisher=Paris: Hermann|author-link=Henri Cartan}}</ref> to be of class <math>C^k</math> on <math>U</math>, for a positive integer <math>k</math>, if all [[partial derivatives]] <math display="block">\frac{\partial^\alpha f}{\partial x_1^{\alpha_1} \, \partial x_2^{\alpha_2}\,\cdots\,\partial x_n^{\alpha_n}}(y_1,y_2,\ldots,y_n)</math> exist and are continuous, for every <math>\alpha_1,\alpha_2,\ldots,\alpha_n</math> non-negative integers, such that <math>\alpha=\alpha_1+\alpha_2+\cdots+\alpha_n\leq k</math>, and every <math>(y_1,y_2,\ldots,y_n)\in U</math>. Equivalently, <math>f</math> is of class <math>C^k</math> on <math>U</math> if the <math>k</math>-th order [[Fréchet derivative]] of <math>f</math> exists and is continuous at every point of <math>U</math>. The function <math>f</math> is said to be of class <math>C</math> or <math>C^0</math> if it is continuous on <math>U</math>. Functions of class <math>C^1</math> are also said to be ''continuously differentiable''. A function <math>f:U\subset\mathbb{R}^n\to\mathbb{R}^m</math>, defined on an open set <math>U</math> of <math>\mathbb{R}^n</math>, is said to be of class <math>C^k</math> on <math>U</math>, for a positive integer <math>k</math>, if all of its components <math display="block">f_i(x_1,x_2,\ldots,x_n)=(\pi_i\circ f)(x_1,x_2,\ldots,x_n)=\pi_i(f(x_1,x_2,\ldots,x_n)) \text{ for } i=1,2,3,\ldots,m</math> are of class <math>C^k</math>, where <math>\pi_i</math> are the natural [[Projection (linear algebra)|projections]] <math>\pi_i:\mathbb{R}^m\to\mathbb{R}</math> defined by <math>\pi_i(x_1,x_2,\ldots,x_m)=x_i</math>. It is said to be of class <math>C</math> or <math>C^0</math> if it is continuous, or equivalently, if all components <math>f_i</math> are continuous, on <math>U</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)